Unveiling the Impact of Interfacial Trap Charges on Strained VS-FeFinFETs for Improved Reliability:Device to Circuit Level Assessment

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kajal Verma;Rishu Chaujar
{"title":"Unveiling the Impact of Interfacial Trap Charges on Strained VS-FeFinFETs for Improved Reliability:Device to Circuit Level Assessment","authors":"Kajal Verma;Rishu Chaujar","doi":"10.1109/TNANO.2025.3531937","DOIUrl":null,"url":null,"abstract":"This paper focuses on the device to circuit level assessment of Si/SiGe strained vertically stacked ferroelectric based FinFETs (VS-FeFinFETs) for improved reliability under the influence of interfacial trap charges (ITCs) at the semiconductor/oxide interface. The device is designed with the amalgamation of several advanced technologies such as SOI, strained tri-layered silicon channel system along with the integration of ferroelectric material in superior gate controlled FinFET. Gate engineering has also been incorporated to further improve the device's reliability against ITCs, forming hetero dielectric vertically stacked ferroelectric based FinFET (HD-VS-FeFinFET) and it is found to possess superior analog, linearity, and harmonic distortion performance. It shows 91.48% reduction in leakage current resulting in 13 times increment in switching ratio along with improvement in quality factor by 46.01%, transconductance by 32.77%, and device efficiency by 26.54% with negligible variations due to ITCs as compared to VS-FeFinFET. Various linearity and harmonic parameters also improved and showed negligible average variations like 4.72% (177.15% ) in VIP2 and 6.525% (25.3% ) in 1-dB compression point for HD-VS-FeFinFET (VS-FeFinFET) against different ITCs polarity making it more reliable for low power microwave and distortion less wireless communication applications. Further logic circuit application of HD-VS-FeFinFET based CMOS inverter has been analysed and it shows improvement by 17.9% in transition range, 51.674% in voltage gain along with ITCs induced average variation of 3.66% (15.88% ) in noise margin for HD-VS-FeFinFET(VS-FeFinFET) based circuit thus led to its development with enhanced functionality, reliability, and performance, poised to shape the landscape of modern electronics.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"88-95"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10847892/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the device to circuit level assessment of Si/SiGe strained vertically stacked ferroelectric based FinFETs (VS-FeFinFETs) for improved reliability under the influence of interfacial trap charges (ITCs) at the semiconductor/oxide interface. The device is designed with the amalgamation of several advanced technologies such as SOI, strained tri-layered silicon channel system along with the integration of ferroelectric material in superior gate controlled FinFET. Gate engineering has also been incorporated to further improve the device's reliability against ITCs, forming hetero dielectric vertically stacked ferroelectric based FinFET (HD-VS-FeFinFET) and it is found to possess superior analog, linearity, and harmonic distortion performance. It shows 91.48% reduction in leakage current resulting in 13 times increment in switching ratio along with improvement in quality factor by 46.01%, transconductance by 32.77%, and device efficiency by 26.54% with negligible variations due to ITCs as compared to VS-FeFinFET. Various linearity and harmonic parameters also improved and showed negligible average variations like 4.72% (177.15% ) in VIP2 and 6.525% (25.3% ) in 1-dB compression point for HD-VS-FeFinFET (VS-FeFinFET) against different ITCs polarity making it more reliable for low power microwave and distortion less wireless communication applications. Further logic circuit application of HD-VS-FeFinFET based CMOS inverter has been analysed and it shows improvement by 17.9% in transition range, 51.674% in voltage gain along with ITCs induced average variation of 3.66% (15.88% ) in noise margin for HD-VS-FeFinFET(VS-FeFinFET) based circuit thus led to its development with enhanced functionality, reliability, and performance, poised to shape the landscape of modern electronics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信