Characterization and comparison of hydrogenated and unhydrogenated amorphous boron carbon nitride films deposited via radio frequency magnetron sputtering

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Ryu Taniguchi, Yusuke Hayashi, Tatsuya Nishida, Yoshiharu Enta, Yushi Suzuki, Yasuyuki Kobayashi, Hideki Nakazawa
{"title":"Characterization and comparison of hydrogenated and unhydrogenated amorphous boron carbon nitride films deposited via radio frequency magnetron sputtering","authors":"Ryu Taniguchi,&nbsp;Yusuke Hayashi,&nbsp;Tatsuya Nishida,&nbsp;Yoshiharu Enta,&nbsp;Yushi Suzuki,&nbsp;Yasuyuki Kobayashi,&nbsp;Hideki Nakazawa","doi":"10.1016/j.tsf.2025.140624","DOIUrl":null,"url":null,"abstract":"<div><div>We have prepared amorphous boron carbon nitride (BCN) and hydrogenated amorphous BCN (BCN:H) films via radio frequency magnetron sputtering without and with H<sub>2</sub> and investigated the effects of hydrogen on the properties of the BCN and BCN:H films. The carbon content of the BCN:H films increased slightly with increasing H<sub>2</sub> flow ratio. Raman measurements clarified that the hydrogen dilution prevented the formation of sp<sup>2</sup> carbon clusters. The Fourier transform infrared absorption peaks corresponding to C<img>H<sub>n</sub> stretching vibration modes increased gradually with the hydrogen flow ratio. The optical bandgap and electrical resistivity of the BCN:H films were larger than those of the BCN films. Additionally, the optical bandgap and electrical resistivity of the BCN:H films increased as the H<sub>2</sub> flow ratio increased, probably due to a decrease in sp<sup>2</sup> C<img>C bonding caused by the introduction of hydrogen during deposition, as shown by X-ray photoelectron spectroscopy. It was found that the BCN:H film exhibited a higher resistivity than the BCN film under almost the same optical bandgap. This result suggests that introducing hydrogen reduces defect density in the BCN:H film. The critical load decreased with the H<sub>2</sub> flow ratio owing to increased internal stress. The tribological properties of the BCN:H films were improved with the H<sub>2</sub> flow ratio. The root-mean-square roughness of the films, as estimated from atomic force microscope images, decreased with an increase in the hydrogen flow ratio.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"813 ","pages":"Article 140624"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000252","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

We have prepared amorphous boron carbon nitride (BCN) and hydrogenated amorphous BCN (BCN:H) films via radio frequency magnetron sputtering without and with H2 and investigated the effects of hydrogen on the properties of the BCN and BCN:H films. The carbon content of the BCN:H films increased slightly with increasing H2 flow ratio. Raman measurements clarified that the hydrogen dilution prevented the formation of sp2 carbon clusters. The Fourier transform infrared absorption peaks corresponding to CHn stretching vibration modes increased gradually with the hydrogen flow ratio. The optical bandgap and electrical resistivity of the BCN:H films were larger than those of the BCN films. Additionally, the optical bandgap and electrical resistivity of the BCN:H films increased as the H2 flow ratio increased, probably due to a decrease in sp2 CC bonding caused by the introduction of hydrogen during deposition, as shown by X-ray photoelectron spectroscopy. It was found that the BCN:H film exhibited a higher resistivity than the BCN film under almost the same optical bandgap. This result suggests that introducing hydrogen reduces defect density in the BCN:H film. The critical load decreased with the H2 flow ratio owing to increased internal stress. The tribological properties of the BCN:H films were improved with the H2 flow ratio. The root-mean-square roughness of the films, as estimated from atomic force microscope images, decreased with an increase in the hydrogen flow ratio.
射频磁控溅射制备氢化与非氢化非晶氮化硼碳膜的表征与比较
采用射频磁控溅射法制备了非晶态氮化硼碳(BCN)和氢化非晶态硼碳(BCN:H)薄膜,并研究了氢对BCN和BCN:H薄膜性能的影响。BCN:H膜的含碳量随H2流动比的增加而略有增加。拉曼测量表明,氢稀释阻止了sp2碳团簇的形成。CHn拉伸振动模式对应的傅里叶变换红外吸收峰随氢气流动比逐渐增大。BCN:H薄膜的光学带隙和电阻率均大于BCN薄膜。此外,x射线光电子能谱显示,BCN:H薄膜的光学带隙和电阻率随着H2流动比的增加而增加,这可能是由于沉积过程中氢的引入导致sp2 CC键的减少。结果表明,在几乎相同的光学带隙下,BCN:H薄膜的电阻率高于BCN薄膜。这一结果表明,氢的引入降低了BCN:H薄膜中的缺陷密度。由于内应力增大,临界载荷随H2流量比的增大而减小。BCN:H薄膜的摩擦学性能随着H2流动比的增加而提高。原子力显微镜图像显示,膜的均方根粗糙度随氢流比的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信