Exosome-based platforms for treatment of multiple sclerosis

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Aidin Mohammadi Zonouz , Mahboobeh Ghasemzadeh Rahbardar , Mona Alibolandi
{"title":"Exosome-based platforms for treatment of multiple sclerosis","authors":"Aidin Mohammadi Zonouz ,&nbsp;Mahboobeh Ghasemzadeh Rahbardar ,&nbsp;Mona Alibolandi","doi":"10.1016/j.brainresbull.2025.111256","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple sclerosis (MS) is a chronic autoimmune illness characterized by inflammation and demyelination of the central nervous system (CNS). The effective delivery of therapeutic agents to the CNS continues to be an important barrier in MS treatment due to the blood-brain barrier and limited access to the affected areas. Exosome-based drug delivery systems have become an attractive option for targeted therapy in MS. Exosomes, small extracellular vesicles derived from various cell types, possess unique biological properties that make them ideal nanocarriers for delivering therapeutic cargo to specific cell populations in the CNS. In this study, we supply a comprehensive overview of the current advances and future perspectives of exosome-based drug delivery systems for MS. We discuss the biogenesis of exosomes, strategies for cargo loading, engineering approaches to enhance their targeting capabilities, and the potential clinical applications of exosome-mediated drug delivery in MS therapy. Additionally, we explore preclinical studies and animal models that demonstrate the effectiveness of exosome-based drug delivery in ameliorating MS pathology. By highlighting the challenges and opportunities in utilizing exosomes as drug delivery vehicles, this review aims to contribute to the growing body of knowledge in the field of nanomedicine for MS. Considering the potential of exosome-based drug delivery systems to enhance the accessibility, specificity, and effectiveness of therapies while minimizing off-target effects might change the therapeutic scenario for MS.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"222 ","pages":"Article 111256"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000681","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is a chronic autoimmune illness characterized by inflammation and demyelination of the central nervous system (CNS). The effective delivery of therapeutic agents to the CNS continues to be an important barrier in MS treatment due to the blood-brain barrier and limited access to the affected areas. Exosome-based drug delivery systems have become an attractive option for targeted therapy in MS. Exosomes, small extracellular vesicles derived from various cell types, possess unique biological properties that make them ideal nanocarriers for delivering therapeutic cargo to specific cell populations in the CNS. In this study, we supply a comprehensive overview of the current advances and future perspectives of exosome-based drug delivery systems for MS. We discuss the biogenesis of exosomes, strategies for cargo loading, engineering approaches to enhance their targeting capabilities, and the potential clinical applications of exosome-mediated drug delivery in MS therapy. Additionally, we explore preclinical studies and animal models that demonstrate the effectiveness of exosome-based drug delivery in ameliorating MS pathology. By highlighting the challenges and opportunities in utilizing exosomes as drug delivery vehicles, this review aims to contribute to the growing body of knowledge in the field of nanomedicine for MS. Considering the potential of exosome-based drug delivery systems to enhance the accessibility, specificity, and effectiveness of therapies while minimizing off-target effects might change the therapeutic scenario for MS.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信