Anna Lauko, Samuel J. Pellock, Kiera H. Sumida, Ivan Anishchenko, David Juergens, Woody Ahern, Jihun Jeung, Alex Shida, Andrew Hunt, Indrek Kalvet, Christoffer Norn, Ian R. Humphreys, Cooper Jamieson, Rohith Krishna, Yakov Kipnis, Alex Kang, Evans Brackenbrough, Asim K. Bera, Banumathi Sankaran, K. N. Houk, David Baker
{"title":"Computational design of serine hydrolases","authors":"Anna Lauko, Samuel J. Pellock, Kiera H. Sumida, Ivan Anishchenko, David Juergens, Woody Ahern, Jihun Jeung, Alex Shida, Andrew Hunt, Indrek Kalvet, Christoffer Norn, Ian R. Humphreys, Cooper Jamieson, Rohith Krishna, Yakov Kipnis, Alex Kang, Evans Brackenbrough, Asim K. Bera, Banumathi Sankaran, K. N. Houk, David Baker","doi":"10.1126/science.adu2454","DOIUrl":null,"url":null,"abstract":"The design of enzymes with complex active sites that mediate multistep reactions remains an outstanding challenge. With serine hydrolases as a model system, we combined the generative capabilities of RFdiffusion with an ensemble generation method for assessing active site preorganization to design enzymes starting from minimal active site descriptions. Experimental characterization revealed catalytic efficiencies ( <jats:italic> k <jats:sub>cat</jats:sub> </jats:italic> / <jats:italic> K <jats:sub>m</jats:sub> </jats:italic> ) up to 2.2x10 <jats:sup>5</jats:sup> M <jats:sup>−1</jats:sup> s <jats:sup>−1</jats:sup> and crystal structures that closely match the design models (Cα RMSDs < 1 Å). Selection for structural compatibility across the reaction coordinate enabled identification of new catalysts in low-throughput screens with five different folds distinct from those of natural serine hydrolases. Our de novo approach provides insight into the geometric basis of catalysis and a roadmap for designing enzymes that catalyze multistep transformations.","PeriodicalId":21678,"journal":{"name":"Science","volume":"30 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adu2454","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The design of enzymes with complex active sites that mediate multistep reactions remains an outstanding challenge. With serine hydrolases as a model system, we combined the generative capabilities of RFdiffusion with an ensemble generation method for assessing active site preorganization to design enzymes starting from minimal active site descriptions. Experimental characterization revealed catalytic efficiencies ( k cat / K m ) up to 2.2x10 5 M −1 s −1 and crystal structures that closely match the design models (Cα RMSDs < 1 Å). Selection for structural compatibility across the reaction coordinate enabled identification of new catalysts in low-throughput screens with five different folds distinct from those of natural serine hydrolases. Our de novo approach provides insight into the geometric basis of catalysis and a roadmap for designing enzymes that catalyze multistep transformations.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.