Near-Infrared Mobile Cloud OA-ICOS Sensor System for Atmospheric Carbon Dioxide Monitoring

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lei Zhang, Ying Hua, Yishen Zhou, Kaiyuan Zheng, Fang Song, Zhiyong Chang, Chuantao Zheng
{"title":"Near-Infrared Mobile Cloud OA-ICOS Sensor System for Atmospheric Carbon Dioxide Monitoring","authors":"Lei Zhang, Ying Hua, Yishen Zhou, Kaiyuan Zheng, Fang Song, Zhiyong Chang, Chuantao Zheng","doi":"10.1021/acs.analchem.4c05644","DOIUrl":null,"url":null,"abstract":"Based on near-infrared off-axis integrated cavity output spectroscopy (OA-ICOS), a portable carbon dioxide (CO<sub>2</sub>) sensor system capable of atmosphere monitoring is proposed by targeting the CO<sub>2</sub> absorption lines at 2.004 μm. To address the comprehensive issues of complex light-adjustment structures, poor sealing, and slow gas replacement, an effective optimization scheme is introduced, combining fluid dynamics to produce a stable optical resonant cavity with an optical path length of 891 m and a physical length of 30 cm. The sensor system boasts a wide dynamic range of 0.011–800 parts per million (ppm), with a limit of detection (LoD) of 11 parts per billion (ppb) at an averaging time of 0.5 s. To address the issues of long monitoring time and cumbersome data supervision, a cloud monitoring system was developed based on a master control module, a cloud server, and a portable monitoring terminal. Field mobile monitoring of urban CO<sub>2</sub> was conducted over a large area in Changchun city, along with a 7-day fixed-point detection on the campus of Jilin University, verifying the reliability and application potential of the mobile CO<sub>2</sub> monitoring system in field applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"19 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05644","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on near-infrared off-axis integrated cavity output spectroscopy (OA-ICOS), a portable carbon dioxide (CO2) sensor system capable of atmosphere monitoring is proposed by targeting the CO2 absorption lines at 2.004 μm. To address the comprehensive issues of complex light-adjustment structures, poor sealing, and slow gas replacement, an effective optimization scheme is introduced, combining fluid dynamics to produce a stable optical resonant cavity with an optical path length of 891 m and a physical length of 30 cm. The sensor system boasts a wide dynamic range of 0.011–800 parts per million (ppm), with a limit of detection (LoD) of 11 parts per billion (ppb) at an averaging time of 0.5 s. To address the issues of long monitoring time and cumbersome data supervision, a cloud monitoring system was developed based on a master control module, a cloud server, and a portable monitoring terminal. Field mobile monitoring of urban CO2 was conducted over a large area in Changchun city, along with a 7-day fixed-point detection on the campus of Jilin University, verifying the reliability and application potential of the mobile CO2 monitoring system in field applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信