Kun Xie, Satoshi Yano, Jinyun Wang, Shota Yamakoshi, Tomoe Ohta, Takuhiro Uto, Maiko Sakai, Xi He, Kaichi Yoshizaki, Takumi Kubota, Kohta Ohnishi, Taichi Hara
{"title":"The Yeast-Fermented Garlic and a Balance of Spermine/Spermidine Activates Autophagy via EGR1 Transcriptional Factor","authors":"Kun Xie, Satoshi Yano, Jinyun Wang, Shota Yamakoshi, Tomoe Ohta, Takuhiro Uto, Maiko Sakai, Xi He, Kaichi Yoshizaki, Takumi Kubota, Kohta Ohnishi, Taichi Hara","doi":"10.1002/mnfr.202400606","DOIUrl":null,"url":null,"abstract":"<p>Spermine (SPM) and spermidine (SPD) are polyamines found in all organisms, and their concentrations can be regulated by ingestion. We demonstrated that yeast-fermented garlic (YF) extract significantly increased autophag flux in OUMS-36T-1 and HeLa cells expressing the fluorescent probe (GFP-LC3-RFP-LC3ΔG). YF-induced increase of autophagy occurred independently of mTORC1 signaling, and RNA-sequencing analysis revealed that <i>EGR1</i> was the most significantly altered gene in YF-treated OUMS-36T-1 cells. YF-treated <i>EGR1-</i>deficient HAP1 cells displayed reduced autophagic flux (<i>p </i>< 0.05). YF-induced increasing of autophagic flux occurred via a specific SPM/SPD ratio. HAP1 cells treated with equivalent amounts of SPD or SPM as that found in YF did not increase autophagic flux (<i>p</i> > 0.05); however, treatment with SPD and SPM in the same ratio as that found in YF increased autophagic flux (<i>p</i> < 0.05). This specific SPM/SPD ratio reduced MG132-induced proteostress via <i>EGR1</i>-dependent pathways (<i>p</i> < 0.05). Thus, the SPM/SPD balance may regulate autophagy via <i>EGR1</i>-dependent pathways, and controlling this balance may provide a strategy to maintain cellular homeostasis.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"69 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400606","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400606","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermine (SPM) and spermidine (SPD) are polyamines found in all organisms, and their concentrations can be regulated by ingestion. We demonstrated that yeast-fermented garlic (YF) extract significantly increased autophag flux in OUMS-36T-1 and HeLa cells expressing the fluorescent probe (GFP-LC3-RFP-LC3ΔG). YF-induced increase of autophagy occurred independently of mTORC1 signaling, and RNA-sequencing analysis revealed that EGR1 was the most significantly altered gene in YF-treated OUMS-36T-1 cells. YF-treated EGR1-deficient HAP1 cells displayed reduced autophagic flux (p < 0.05). YF-induced increasing of autophagic flux occurred via a specific SPM/SPD ratio. HAP1 cells treated with equivalent amounts of SPD or SPM as that found in YF did not increase autophagic flux (p > 0.05); however, treatment with SPD and SPM in the same ratio as that found in YF increased autophagic flux (p < 0.05). This specific SPM/SPD ratio reduced MG132-induced proteostress via EGR1-dependent pathways (p < 0.05). Thus, the SPM/SPD balance may regulate autophagy via EGR1-dependent pathways, and controlling this balance may provide a strategy to maintain cellular homeostasis.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.