Error-related potentials during multitasking involving sensorimotor control: an ERP and offline decoding study for brain-computer interface.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Frontiers in Human Neuroscience Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1516721
Masaki Yasuhara, Isao Nambu
{"title":"Error-related potentials during multitasking involving sensorimotor control: an ERP and offline decoding study for brain-computer interface.","authors":"Masaki Yasuhara, Isao Nambu","doi":"10.3389/fnhum.2025.1516721","DOIUrl":null,"url":null,"abstract":"<p><p>Humans achieve efficient behaviors by perceiving and responding to errors. Error-related potentials (ErrPs) are electrophysiological responses that occur upon perceiving errors. Leveraging ErrPs to improve the accuracy of brain-computer interfaces (BCIs), utilizing the brain's natural error-detection processes to enhance system performance, has been proposed. However, the influence of external and contextual factors on the detectability of ErrPs remains poorly understood, especially in multitasking scenarios involving both BCI operations and sensorimotor control. Herein, we hypothesized that the difficulty in sensorimotor control would lead to the dispersion of neural resources in multitasking, resulting in a reduction in ErrP features. To examine this, we conducted an experiment in which participants were instructed to keep a ball within a designated area on a board, while simultaneously attempting to control a cursor on a display through motor imagery. The BCI provided error feedback with a random probability of 30%. Three scenarios-without a ball (single-task), lightweight ball (easy-task), and heavyweight ball (hard-task)-were used for the characterization of ErrPs based on the difficulty of sensorimotor control. In addition, to examine the impact of multitasking on ErrP-BCI performance, we analyzed single-trial classification accuracy offline. Contrary to our hypothesis, varying the difficulty of sensorimotor control did not result in significant changes in ErrP features. However, multitasking significantly affected ErrP classification accuracy. <i>Post-hoc</i> analyses revealed that the classifier trained on single-task ErrPs exhibited reduced accuracy under hard-task scenarios. To our knowledge, this study is the first to investigate how ErrPs are modulated in a multitasking environment involving both sensorimotor control and BCI operation in an offline framework. Although the ErrP features remained unchanged, the observed variation in accuracy suggests the need to design classifiers that account for task load even before implementing a real-time ErrP-based BCI.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1516721"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1516721","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Humans achieve efficient behaviors by perceiving and responding to errors. Error-related potentials (ErrPs) are electrophysiological responses that occur upon perceiving errors. Leveraging ErrPs to improve the accuracy of brain-computer interfaces (BCIs), utilizing the brain's natural error-detection processes to enhance system performance, has been proposed. However, the influence of external and contextual factors on the detectability of ErrPs remains poorly understood, especially in multitasking scenarios involving both BCI operations and sensorimotor control. Herein, we hypothesized that the difficulty in sensorimotor control would lead to the dispersion of neural resources in multitasking, resulting in a reduction in ErrP features. To examine this, we conducted an experiment in which participants were instructed to keep a ball within a designated area on a board, while simultaneously attempting to control a cursor on a display through motor imagery. The BCI provided error feedback with a random probability of 30%. Three scenarios-without a ball (single-task), lightweight ball (easy-task), and heavyweight ball (hard-task)-were used for the characterization of ErrPs based on the difficulty of sensorimotor control. In addition, to examine the impact of multitasking on ErrP-BCI performance, we analyzed single-trial classification accuracy offline. Contrary to our hypothesis, varying the difficulty of sensorimotor control did not result in significant changes in ErrP features. However, multitasking significantly affected ErrP classification accuracy. Post-hoc analyses revealed that the classifier trained on single-task ErrPs exhibited reduced accuracy under hard-task scenarios. To our knowledge, this study is the first to investigate how ErrPs are modulated in a multitasking environment involving both sensorimotor control and BCI operation in an offline framework. Although the ErrP features remained unchanged, the observed variation in accuracy suggests the need to design classifiers that account for task load even before implementing a real-time ErrP-based BCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信