Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Iman Bagherpour, M R Mozafari, Seyed Morteza Naghib
{"title":"Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy.","authors":"Iman Bagherpour, M R Mozafari, Seyed Morteza Naghib","doi":"10.2174/0113816128352935250116064725","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It primarily affects the central nervous system (CNS), but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. The blood-brain barrier (BBB), which separates peripheral blood circulation from the central nervous system, is essential for maintaining intracerebral homeostasis. Drug delivery systems based on nanomaterials (NDDSs) employ nanoparticles (NPs) as their drug transport vehicles. Moreover, nanotechnologybased methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs, especially in diagnosis and drug delivery, with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. The discussion concluded with a look at the opportunities and problems that come with NDDSs in modern basic and clinical research.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128352935250116064725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It primarily affects the central nervous system (CNS), but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. The blood-brain barrier (BBB), which separates peripheral blood circulation from the central nervous system, is essential for maintaining intracerebral homeostasis. Drug delivery systems based on nanomaterials (NDDSs) employ nanoparticles (NPs) as their drug transport vehicles. Moreover, nanotechnologybased methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs, especially in diagnosis and drug delivery, with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. The discussion concluded with a look at the opportunities and problems that come with NDDSs in modern basic and clinical research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信