Amelioration of obesity-associated disorders using solanesol with the mitigation of NLRP3 inflammasome activation and macrophage inflammation in adipose tissue.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-02-12 DOI:10.1039/d4fo05586a
Xiaqing Wu, Huan Chen, Yushan Tian, Hongjuan Wang, Hongwei Hou, Qingyuan Hu, Congyi Wang
{"title":"Amelioration of obesity-associated disorders using solanesol with the mitigation of NLRP3 inflammasome activation and macrophage inflammation in adipose tissue.","authors":"Xiaqing Wu, Huan Chen, Yushan Tian, Hongjuan Wang, Hongwei Hou, Qingyuan Hu, Congyi Wang","doi":"10.1039/d4fo05586a","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity and obesity-related metabolic diseases are causally linked to inflammatory activation. Proinflammatory macrophage infiltration and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation contribute to chronic inflammation and insulin resistance. Alleviating inflammatory responses is a reliable method to restore insulin sensitivity and reduce the severity of metabolic syndrome. Solanesol, rich in anti-inflammatory foods (potato, tomato, eggplant, chili peppers), has demonstrated anti-inflammatory properties, but whether it plays a beneficial role in obesity-induced chronic inflammation remains poorly understood. In this study, we investigated the effects of solanesol on the NLRP3 inflammasome and inflammatory responses both <i>in vitro</i> and in high-fat diet (HFD)-fed mice. We found that oral administration of solanesol reduced weight gain, insulin resistance, and inflammation in epididymal white adipose tissue (eWAT) in both HFD-fed obese mice and mice concurrently treated with a HFD. This effect was involved with reducing macrophage inflammation and inactivating the NLRP3 inflammasome by reducing the K<sup>+</sup> efflux and reactive oxygen species (ROS) production in macrophages. Solanesol also reprogrammed the phenotype of inflammatory macrophages. Taken together, our study suggests that solanesol may be a promising candidate for treating obesity and obesity-related metabolic diseases.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05586a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity and obesity-related metabolic diseases are causally linked to inflammatory activation. Proinflammatory macrophage infiltration and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation contribute to chronic inflammation and insulin resistance. Alleviating inflammatory responses is a reliable method to restore insulin sensitivity and reduce the severity of metabolic syndrome. Solanesol, rich in anti-inflammatory foods (potato, tomato, eggplant, chili peppers), has demonstrated anti-inflammatory properties, but whether it plays a beneficial role in obesity-induced chronic inflammation remains poorly understood. In this study, we investigated the effects of solanesol on the NLRP3 inflammasome and inflammatory responses both in vitro and in high-fat diet (HFD)-fed mice. We found that oral administration of solanesol reduced weight gain, insulin resistance, and inflammation in epididymal white adipose tissue (eWAT) in both HFD-fed obese mice and mice concurrently treated with a HFD. This effect was involved with reducing macrophage inflammation and inactivating the NLRP3 inflammasome by reducing the K+ efflux and reactive oxygen species (ROS) production in macrophages. Solanesol also reprogrammed the phenotype of inflammatory macrophages. Taken together, our study suggests that solanesol may be a promising candidate for treating obesity and obesity-related metabolic diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信