Scalogram based performance comparison of deep learning architectures for dysarthric speech detection

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaik Mulla Shabber, E. P. Sumesh, Vidhya Lavanya Ramachandran
{"title":"Scalogram based performance comparison of deep learning architectures for dysarthric speech detection","authors":"Shaik Mulla Shabber,&nbsp;E. P. Sumesh,&nbsp;Vidhya Lavanya Ramachandran","doi":"10.1007/s10462-024-11085-7","DOIUrl":null,"url":null,"abstract":"<div><p>Dysarthria, a speech disorder commonly associated with neurological conditions, poses challenges in early detection and accurate diagnosis. This study addresses these challenges by implementing preprocessing steps, such as noise reduction and normalization, to enhance the quality of raw speech signals and extract relevant features. Scalogram images generated through wavelet transform effectively capture the time-frequency characteristics of the speech signal, offering a visual representation of the spectral content over time and providing valuable insights into speech abnormalities related to dysarthria. Fine-tuned deep learning models, including pre-trained convolutional neural network (CNN) architectures like VGG19, DenseNet-121, Xception, and a modified InceptionV3, were optimized with specific hyperparameters using training and validation sets. Transfer learning enables these models to adapt features from general image classification tasks to classify dysarthric speech signals better. The study evaluates the models using two public datasets TORGO and UA-Speech and a third dataset collected by the authors and verified by medical practitioners. The results reveal that the CNN models achieve an accuracy (acc) range of 90% to 99%, an F1-score range of 0.95 to 0.99, and a recall range of 0.96 to 0.99, outperforming traditional methods in dysarthria detection. These findings highlight the effectiveness of the proposed approach, leveraging deep learning and scalogram images to advance early diagnosis and healthcare outcomes for individuals with dysarthria.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11085-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11085-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dysarthria, a speech disorder commonly associated with neurological conditions, poses challenges in early detection and accurate diagnosis. This study addresses these challenges by implementing preprocessing steps, such as noise reduction and normalization, to enhance the quality of raw speech signals and extract relevant features. Scalogram images generated through wavelet transform effectively capture the time-frequency characteristics of the speech signal, offering a visual representation of the spectral content over time and providing valuable insights into speech abnormalities related to dysarthria. Fine-tuned deep learning models, including pre-trained convolutional neural network (CNN) architectures like VGG19, DenseNet-121, Xception, and a modified InceptionV3, were optimized with specific hyperparameters using training and validation sets. Transfer learning enables these models to adapt features from general image classification tasks to classify dysarthric speech signals better. The study evaluates the models using two public datasets TORGO and UA-Speech and a third dataset collected by the authors and verified by medical practitioners. The results reveal that the CNN models achieve an accuracy (acc) range of 90% to 99%, an F1-score range of 0.95 to 0.99, and a recall range of 0.96 to 0.99, outperforming traditional methods in dysarthria detection. These findings highlight the effectiveness of the proposed approach, leveraging deep learning and scalogram images to advance early diagnosis and healthcare outcomes for individuals with dysarthria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信