Hassane Benbouziane, Kaddour Chadli, Mustapha Ech-chérif El Kettani
{"title":"Mappings preserving generalized and hyper-generalized projection operators","authors":"Hassane Benbouziane, Kaddour Chadli, Mustapha Ech-chérif El Kettani","doi":"10.1016/j.laa.2025.01.038","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> be the algebra of all bounded linear operators on a complex Hilbert space <span><math><mi>H</mi></math></span> with <span><math><mi>dim</mi><mspace></mspace><mi>H</mi><mo>≥</mo><mn>3</mn></math></span>. For a fixed integer <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, an operator <span><math><mi>A</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is called <em>k</em>-generalized projection if <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and <em>k</em>-hyper-generalized projection if <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span>, where <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> denote the adjoint and the Moore–Penrose inverse of <em>A</em>, respectively. In this paper, we provide a complete characterization of surjective maps <span><math><mi>Φ</mi><mo>:</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>→</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> such that <span><math><mi>A</mi><mo>−</mo><mi>λ</mi><mi>B</mi></math></span> is <em>k</em>-generalized projection (resp. <em>k</em>-hyper-generalized projection) if and only if <span><math><mi>Φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>−</mo><mi>λ</mi><mi>Φ</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span> is <em>k</em>-generalized projection (resp. <em>k</em>-hyper-generalized projection), for any <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>∈</mo><mi>C</mi></math></span>. We also study the non-linear preservers of <em>k</em>-potent operators.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 418-447"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000448","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the algebra of all bounded linear operators on a complex Hilbert space with . For a fixed integer , an operator is called k-generalized projection if , and k-hyper-generalized projection if , where and denote the adjoint and the Moore–Penrose inverse of A, respectively. In this paper, we provide a complete characterization of surjective maps such that is k-generalized projection (resp. k-hyper-generalized projection) if and only if is k-generalized projection (resp. k-hyper-generalized projection), for any and . We also study the non-linear preservers of k-potent operators.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.