On commutators of unipotent matrices of index 2

IF 1 3区 数学 Q1 MATHEMATICS
Kennett L. Dela Rosa, Juan Paolo C. Santos
{"title":"On commutators of unipotent matrices of index 2","authors":"Kennett L. Dela Rosa,&nbsp;Juan Paolo C. Santos","doi":"10.1016/j.laa.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>A commutator of unipotent matrices of index 2 is a matrix of the form <span><math><mi>X</mi><mi>Y</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>Y</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <em>X</em> and <em>Y</em> are unipotent matrices of index 2, that is, <span><math><mi>X</mi><mo>≠</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>Y</mi><mo>≠</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <span><math><msup><mrow><mo>(</mo><mi>X</mi><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>Y</mi><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msub></math></span>. If <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span> and <span><math><mi>F</mi></math></span> is a field with <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mn>4</mn></math></span>, then it is shown that every <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix over <span><math><mi>F</mi></math></span> with determinant 1 is a product of at most four commutators of unipotent matrices of index 2. Consequently, every <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix over <span><math><mi>F</mi></math></span> with determinant 1 is a product of at most eight unipotent matrices of index 2. Conditions on <span><math><mi>F</mi></math></span> are given that improve the upper bound on the commutator factors from four to three or two. The situation for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> is also considered. This study reveals a connection between factorability into commutators of unipotent matrices and properties of <span><math><mi>F</mi></math></span> such as its characteristic or its set of perfect squares.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 385-404"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000539","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A commutator of unipotent matrices of index 2 is a matrix of the form XYX1Y1, where X and Y are unipotent matrices of index 2, that is, XIn, YIn, and (XIn)2=(YIn)2=0n. If n>2 and F is a field with |F|4, then it is shown that every n×n matrix over F with determinant 1 is a product of at most four commutators of unipotent matrices of index 2. Consequently, every n×n matrix over F with determinant 1 is a product of at most eight unipotent matrices of index 2. Conditions on F are given that improve the upper bound on the commutator factors from four to three or two. The situation for n=2 is also considered. This study reveals a connection between factorability into commutators of unipotent matrices and properties of F such as its characteristic or its set of perfect squares.
指标为2的幂偶矩阵的对易子
指标2的单幂矩阵的对易子是XYX−1Y−1形式的矩阵,其中X和Y是指标2的单幂矩阵,即X≠In, Y≠In, (X−In)2=(Y−In)2=0n。如果n>;2和F是一个|F|≥4的域,则证明了F上每一个行列式为1的n×n矩阵都是索引为2的幂偶矩阵的至多四个换子的乘积。因此,F上的每个n×n矩阵的行列式为1,是最多八个指标为2的单幂矩阵的乘积。给出了F上换向子因子的上界由4提高到3或2的条件。还考虑了n=2时的情况。本研究揭示了幂偶矩阵的可分解为对易子与F的性质(如其特征或其完全平方集)之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信