Efficiency-Driven Adaptive Task Planning for Household Robot Based on Hierarchical Item-Environment Cognition

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mengyang Zhang;Guohui Tian;Yongcheng Cui;Hong Liu;Lei Lyu
{"title":"Efficiency-Driven Adaptive Task Planning for Household Robot Based on Hierarchical Item-Environment Cognition","authors":"Mengyang Zhang;Guohui Tian;Yongcheng Cui;Hong Liu;Lei Lyu","doi":"10.1109/TCYB.2025.3531433","DOIUrl":null,"url":null,"abstract":"Task planning focused on household robots represents a conventional yet complex research domain, necessitating the development of task plans that enable robots to execute unfamiliar household services. This area has garnered significant research interest due to its extensive applications in robotics, particularly concerning household robots. Nevertheless, the majority of task planning methodologies exhibit suboptimal performance regarding the success and efficiency of completing household tasks, primarily due to a lack of cognitive capacity of household items and home environments. To address these challenges, we propose an efficiency-driven adaptive task planning approach based on hierarchical item-environment cognition. Initially, we establish a multiple semantic attribute-based priori knowledge (MSAPK) framework to facilitate the attributive representation of household items. Utilizing MSAPK, we develop a long short-term memory (LSTM) based item cognition model that assigns relevant attributes and substitutes to specified household items, thereby enhancing the cognitive capabilities of household robots at the attribute level. Subsequently, we construct an environment cognition model that delineates the relationships between household items and room types, enabling household robots to locate target items more efficiently. Through hierarchical item-environment cognition, we introduce a strategy for adaptive task planning, empowering household robots to execute household tasks with both flexibility and efficiency. The generated plans are evaluated in both virtual and real-world experiments, with promising results affirming the effectiveness of our proposed methodology.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 4","pages":"1772-1788"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10880476/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Task planning focused on household robots represents a conventional yet complex research domain, necessitating the development of task plans that enable robots to execute unfamiliar household services. This area has garnered significant research interest due to its extensive applications in robotics, particularly concerning household robots. Nevertheless, the majority of task planning methodologies exhibit suboptimal performance regarding the success and efficiency of completing household tasks, primarily due to a lack of cognitive capacity of household items and home environments. To address these challenges, we propose an efficiency-driven adaptive task planning approach based on hierarchical item-environment cognition. Initially, we establish a multiple semantic attribute-based priori knowledge (MSAPK) framework to facilitate the attributive representation of household items. Utilizing MSAPK, we develop a long short-term memory (LSTM) based item cognition model that assigns relevant attributes and substitutes to specified household items, thereby enhancing the cognitive capabilities of household robots at the attribute level. Subsequently, we construct an environment cognition model that delineates the relationships between household items and room types, enabling household robots to locate target items more efficiently. Through hierarchical item-environment cognition, we introduce a strategy for adaptive task planning, empowering household robots to execute household tasks with both flexibility and efficiency. The generated plans are evaluated in both virtual and real-world experiments, with promising results affirming the effectiveness of our proposed methodology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信