Mochammad Ariyanto, Xiaofeng Zheng, Ryo Tanaka, Chowdhury Mohammad Masum Refat, Nima Hirota, Kotaro Yamamoto, Keisuke Morishima
{"title":"Biohybrid Behavior-Based Navigation with Obstacle Avoidance for Cyborg Insect in Complex Environment.","authors":"Mochammad Ariyanto, Xiaofeng Zheng, Ryo Tanaka, Chowdhury Mohammad Masum Refat, Nima Hirota, Kotaro Yamamoto, Keisuke Morishima","doi":"10.1089/soro.2024.0082","DOIUrl":null,"url":null,"abstract":"<p><p>Autonomous navigation of cyborg insects in complex environments remains a challenging issue. Cyborg insects, which combine biological organisms with electronic components, offer a unique approach to tackle such challenges. This study presents a biohybrid behavior-based navigation (BIOBBN) system that enables cyborg cockroaches to navigate complex environments autonomously. Two navigation algorithms were developed: reach-avoid navigation for less complex environments and adaptive reach-avoid navigation for more challenging scenarios. This algorithm, especially the second one, leveraged the cockroaches' natural behaviors, such as wall-following and climbing, to navigate around and over obstacles. Experiments in simulated environments, including sand and rock-covered surfaces, demonstrate the effectiveness of the BIOBBN system in enabling cyborg cockroaches to navigate and reach target locations. The denser second scenario required more time due to increased obstacle avoidance and natural climbing behavior. Overall performance was promising, highlighting the potential of biohybrid navigation for autonomous cyborg insects in navigating complex environments.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous navigation of cyborg insects in complex environments remains a challenging issue. Cyborg insects, which combine biological organisms with electronic components, offer a unique approach to tackle such challenges. This study presents a biohybrid behavior-based navigation (BIOBBN) system that enables cyborg cockroaches to navigate complex environments autonomously. Two navigation algorithms were developed: reach-avoid navigation for less complex environments and adaptive reach-avoid navigation for more challenging scenarios. This algorithm, especially the second one, leveraged the cockroaches' natural behaviors, such as wall-following and climbing, to navigate around and over obstacles. Experiments in simulated environments, including sand and rock-covered surfaces, demonstrate the effectiveness of the BIOBBN system in enabling cyborg cockroaches to navigate and reach target locations. The denser second scenario required more time due to increased obstacle avoidance and natural climbing behavior. Overall performance was promising, highlighting the potential of biohybrid navigation for autonomous cyborg insects in navigating complex environments.