Amelioration of metabolic syndrome in high-fat diet-fed mice by total sesquiterpene lactones of chicory via modulation of intestinal flora and bile acid excretion.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-02-11 DOI:10.1039/d4fo05633g
Lushi Huang, Zhiwei Zhang, Fengqi Zhang, Weichen Zhang, Xiuhua Meng, Tunyu Jian, Xiaoqin Ding, Jian Chen
{"title":"Amelioration of metabolic syndrome in high-fat diet-fed mice by total sesquiterpene lactones of chicory <i>via</i> modulation of intestinal flora and bile acid excretion.","authors":"Lushi Huang, Zhiwei Zhang, Fengqi Zhang, Weichen Zhang, Xiuhua Meng, Tunyu Jian, Xiaoqin Ding, Jian Chen","doi":"10.1039/d4fo05633g","DOIUrl":null,"url":null,"abstract":"<p><p>Chicory (<i>Cichorium intybus</i> L.) is a commonly used vegetable in Europe and is also regarded as a plant for both medicinal and edible uses in China. Chicory exhibits a substantial abundance of sesquiterpene lactone compounds within its composition. The prevalence of metabolic syndrome (MetS) is increasing and has become a global public health issue threatening the well-being of the general population. Recent studies have identified plant secondary metabolites as potential substances for treating MetS. Sesquiterpene lactones, a type of secondary metabolite with diverse biological activities, have been reported to exhibit anti-inflammatory effects, reduce lipid accumulation, and normalize blood glucose levels. However, the therapeutic effects of chicory sesquiterpene lactones on MetS remain to be explored, and little is known about sesquiterpene lactones' effects on intestinal flora and bile acids (BAs). Therefore, the effects of total sesquiterpene lactones (TSLs) from chicory on metabolic disorders, intestinal flora, and BAs were investigated in this study. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, followed by administration of TSLs, total chicory extract (TCE), and pioglitazone (Pio) for another 8 weeks. TSL, TCE, and Pio interventions reduced body weight gain, hepatic lipid accumulation, and lipogenesis in HFD-fed mice and attenuated plasma biochemical parameters. Among them, TSLs exhibited more significant effects, prompting further analysis of their impact on intestinal flora and bile acid metabolism. TSL intervention influenced the composition and structure of intestinal flora and BAs. TSL intervention impacted the composition and structure of the intestinal flora, characterized by a decrease in the abundances of <i>Allobaculum</i>, <i>unidentified_Coriobacteriaceae</i>, and <i>Odoribacter</i>, while the abundances of <i>Prevotella</i>, <i>unidentified_Erysipelotrichaceae</i> and <i>Akkermansia</i> were increased. Additionally, the levels of BAs TCDCA, GDCA, UDCA, 12-ketoLCA, 7-ketoLCA, and 6,7-diketoLCA were reduced. The research results indicated that TSLs from chicory may serve as potential agents for regulating metabolic abnormalities associated with MetS, as their effects can influence intestinal flora and BAs. The conclusions of this study are expected to open new research trajectories in the field of food science and nutrition, providing a solid scientific basis and innovative intervention approaches for the development of strategies targeting MetS prevention and management.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05633g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chicory (Cichorium intybus L.) is a commonly used vegetable in Europe and is also regarded as a plant for both medicinal and edible uses in China. Chicory exhibits a substantial abundance of sesquiterpene lactone compounds within its composition. The prevalence of metabolic syndrome (MetS) is increasing and has become a global public health issue threatening the well-being of the general population. Recent studies have identified plant secondary metabolites as potential substances for treating MetS. Sesquiterpene lactones, a type of secondary metabolite with diverse biological activities, have been reported to exhibit anti-inflammatory effects, reduce lipid accumulation, and normalize blood glucose levels. However, the therapeutic effects of chicory sesquiterpene lactones on MetS remain to be explored, and little is known about sesquiterpene lactones' effects on intestinal flora and bile acids (BAs). Therefore, the effects of total sesquiterpene lactones (TSLs) from chicory on metabolic disorders, intestinal flora, and BAs were investigated in this study. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, followed by administration of TSLs, total chicory extract (TCE), and pioglitazone (Pio) for another 8 weeks. TSL, TCE, and Pio interventions reduced body weight gain, hepatic lipid accumulation, and lipogenesis in HFD-fed mice and attenuated plasma biochemical parameters. Among them, TSLs exhibited more significant effects, prompting further analysis of their impact on intestinal flora and bile acid metabolism. TSL intervention influenced the composition and structure of intestinal flora and BAs. TSL intervention impacted the composition and structure of the intestinal flora, characterized by a decrease in the abundances of Allobaculum, unidentified_Coriobacteriaceae, and Odoribacter, while the abundances of Prevotella, unidentified_Erysipelotrichaceae and Akkermansia were increased. Additionally, the levels of BAs TCDCA, GDCA, UDCA, 12-ketoLCA, 7-ketoLCA, and 6,7-diketoLCA were reduced. The research results indicated that TSLs from chicory may serve as potential agents for regulating metabolic abnormalities associated with MetS, as their effects can influence intestinal flora and BAs. The conclusions of this study are expected to open new research trajectories in the field of food science and nutrition, providing a solid scientific basis and innovative intervention approaches for the development of strategies targeting MetS prevention and management.

菊苣总倍半萜内酯通过调节肠道菌群和胆汁酸排泄改善高脂饮食喂养小鼠的代谢综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信