Dev-Atlas: A reference atlas of functional brain networks for typically developing adolescents

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Gaelle E. Doucet , Callum Goldsmith , Katrina Myers , Danielle L. Rice , Grace Ende , Derek J. Pavelka , Marc Joliot , Vince D. Calhoun , Tony W. Wilson , Lucina Q. Uddin
{"title":"Dev-Atlas: A reference atlas of functional brain networks for typically developing adolescents","authors":"Gaelle E. Doucet ,&nbsp;Callum Goldsmith ,&nbsp;Katrina Myers ,&nbsp;Danielle L. Rice ,&nbsp;Grace Ende ,&nbsp;Derek J. Pavelka ,&nbsp;Marc Joliot ,&nbsp;Vince D. Calhoun ,&nbsp;Tony W. Wilson ,&nbsp;Lucina Q. Uddin","doi":"10.1016/j.dcn.2025.101523","DOIUrl":null,"url":null,"abstract":"<div><div>It is well accepted that the brain is functionally organized into multiple networks and extensive literature has demonstrated that the organization of these networks shows major changes during adolescence. Yet, there is limited option for a reference functional brain atlas derived from typically-developing adolescents, which is problematic as the reliable identification of functional brain networks crucially depends on the use of such reference functional atlases. In this context, we utilized resting-state functional MRI data from 1391 typically-developing youth aged 8–17 years to create an adolescent-specific reference atlas of functional brain networks. We further investigated the impact of age and sex on these networks. Using a multiscale individual component clustering algorithm, we identified 24 reliable functional brain networks, classified within six domains: Default-Mode (5 networks), Control (4 networks), Salience (3 networks), Attention (4 networks), Somatomotor (5 networks), and Visual (3 networks). We identified reliable and large effects of age on the spatial topography of these majority of networks, as well as on the functional network connectivity. Sex effects were not as widespread. We created a novel brain atlas, named Dev-Atlas, focused on a typically-developing sample, with the hope that this atlas can be used in future developmental neuroscience studies.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"72 ","pages":"Article 101523"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000180","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is well accepted that the brain is functionally organized into multiple networks and extensive literature has demonstrated that the organization of these networks shows major changes during adolescence. Yet, there is limited option for a reference functional brain atlas derived from typically-developing adolescents, which is problematic as the reliable identification of functional brain networks crucially depends on the use of such reference functional atlases. In this context, we utilized resting-state functional MRI data from 1391 typically-developing youth aged 8–17 years to create an adolescent-specific reference atlas of functional brain networks. We further investigated the impact of age and sex on these networks. Using a multiscale individual component clustering algorithm, we identified 24 reliable functional brain networks, classified within six domains: Default-Mode (5 networks), Control (4 networks), Salience (3 networks), Attention (4 networks), Somatomotor (5 networks), and Visual (3 networks). We identified reliable and large effects of age on the spatial topography of these majority of networks, as well as on the functional network connectivity. Sex effects were not as widespread. We created a novel brain atlas, named Dev-Atlas, focused on a typically-developing sample, with the hope that this atlas can be used in future developmental neuroscience studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信