Federico Stacchiotti , Chiara Bregoli , Rubens Ferrari , Jacopo Fiocchi , Kavin Morellato , Carlo Alberto Biffi , Mattia Frascio , Matilde Minuto , Ausonio Tuissi , Emanuele Gruppioni
{"title":"A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation","authors":"Federico Stacchiotti , Chiara Bregoli , Rubens Ferrari , Jacopo Fiocchi , Kavin Morellato , Carlo Alberto Biffi , Mattia Frascio , Matilde Minuto , Ausonio Tuissi , Emanuele Gruppioni","doi":"10.1016/j.medengphy.2025.104296","DOIUrl":null,"url":null,"abstract":"<div><div>Thumb amputations strongly affect hand functionality in daily activities. The currently available solutions, such as microsurgical treatments and external vacuum prostheses present disadvantages, which can be successfully addressed through the osseointegration technique. However, despite its widespread use in oral applications, only a few osseointegrated solutions for the treatment of hand-finger amputations are available. Bone remaining limbs may have different lengths, diameters, and conditions and no patient-matched osseointegrated medical devices are available on the market. The manuscript presents the first patient-matched medical device for the treatment of thumb amputations. The prosthesis mainly consists of three components: an osseointegrated fixture which is implanted into the medullary canal of the bone remaining limb, an abutment, and an external digital prosthesis. The design phase is followed by computational and experimental analysis to optimize the design of each component attached to the osseointegrated fixture in order to preserve the implant fixture and bone. The maximum force generated during the pinch test in a healthy subject is approximately 80 N. The mechanical performance required during daily activities is achieved by the novel proposed device and the obtained results confirm that, in case of loads greater than daily ones, the failure may occur in the abutment component which is external to the body. A limitation of the current study consists in the lack of analysis on the bone-implant interface for which specific investigations would be required: currently, the contact between bone and fixture is assumed to be fixed, i.e. no micro motions are considered. Research is ongoing to test the entire device in a clinical study to collect quantitative and qualitative information from patients and surgeons.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104296"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thumb amputations strongly affect hand functionality in daily activities. The currently available solutions, such as microsurgical treatments and external vacuum prostheses present disadvantages, which can be successfully addressed through the osseointegration technique. However, despite its widespread use in oral applications, only a few osseointegrated solutions for the treatment of hand-finger amputations are available. Bone remaining limbs may have different lengths, diameters, and conditions and no patient-matched osseointegrated medical devices are available on the market. The manuscript presents the first patient-matched medical device for the treatment of thumb amputations. The prosthesis mainly consists of three components: an osseointegrated fixture which is implanted into the medullary canal of the bone remaining limb, an abutment, and an external digital prosthesis. The design phase is followed by computational and experimental analysis to optimize the design of each component attached to the osseointegrated fixture in order to preserve the implant fixture and bone. The maximum force generated during the pinch test in a healthy subject is approximately 80 N. The mechanical performance required during daily activities is achieved by the novel proposed device and the obtained results confirm that, in case of loads greater than daily ones, the failure may occur in the abutment component which is external to the body. A limitation of the current study consists in the lack of analysis on the bone-implant interface for which specific investigations would be required: currently, the contact between bone and fixture is assumed to be fixed, i.e. no micro motions are considered. Research is ongoing to test the entire device in a clinical study to collect quantitative and qualitative information from patients and surgeons.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.