A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Federico Stacchiotti , Chiara Bregoli , Rubens Ferrari , Jacopo Fiocchi , Kavin Morellato , Carlo Alberto Biffi , Mattia Frascio , Matilde Minuto , Ausonio Tuissi , Emanuele Gruppioni
{"title":"A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation","authors":"Federico Stacchiotti ,&nbsp;Chiara Bregoli ,&nbsp;Rubens Ferrari ,&nbsp;Jacopo Fiocchi ,&nbsp;Kavin Morellato ,&nbsp;Carlo Alberto Biffi ,&nbsp;Mattia Frascio ,&nbsp;Matilde Minuto ,&nbsp;Ausonio Tuissi ,&nbsp;Emanuele Gruppioni","doi":"10.1016/j.medengphy.2025.104296","DOIUrl":null,"url":null,"abstract":"<div><div>Thumb amputations strongly affect hand functionality in daily activities. The currently available solutions, such as microsurgical treatments and external vacuum prostheses present disadvantages, which can be successfully addressed through the osseointegration technique. However, despite its widespread use in oral applications, only a few osseointegrated solutions for the treatment of hand-finger amputations are available. Bone remaining limbs may have different lengths, diameters, and conditions and no patient-matched osseointegrated medical devices are available on the market. The manuscript presents the first patient-matched medical device for the treatment of thumb amputations. The prosthesis mainly consists of three components: an osseointegrated fixture which is implanted into the medullary canal of the bone remaining limb, an abutment, and an external digital prosthesis. The design phase is followed by computational and experimental analysis to optimize the design of each component attached to the osseointegrated fixture in order to preserve the implant fixture and bone. The maximum force generated during the pinch test in a healthy subject is approximately 80 N. The mechanical performance required during daily activities is achieved by the novel proposed device and the obtained results confirm that, in case of loads greater than daily ones, the failure may occur in the abutment component which is external to the body. A limitation of the current study consists in the lack of analysis on the bone-implant interface for which specific investigations would be required: currently, the contact between bone and fixture is assumed to be fixed, i.e. no micro motions are considered. Research is ongoing to test the entire device in a clinical study to collect quantitative and qualitative information from patients and surgeons.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104296"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thumb amputations strongly affect hand functionality in daily activities. The currently available solutions, such as microsurgical treatments and external vacuum prostheses present disadvantages, which can be successfully addressed through the osseointegration technique. However, despite its widespread use in oral applications, only a few osseointegrated solutions for the treatment of hand-finger amputations are available. Bone remaining limbs may have different lengths, diameters, and conditions and no patient-matched osseointegrated medical devices are available on the market. The manuscript presents the first patient-matched medical device for the treatment of thumb amputations. The prosthesis mainly consists of three components: an osseointegrated fixture which is implanted into the medullary canal of the bone remaining limb, an abutment, and an external digital prosthesis. The design phase is followed by computational and experimental analysis to optimize the design of each component attached to the osseointegrated fixture in order to preserve the implant fixture and bone. The maximum force generated during the pinch test in a healthy subject is approximately 80 N. The mechanical performance required during daily activities is achieved by the novel proposed device and the obtained results confirm that, in case of loads greater than daily ones, the failure may occur in the abutment component which is external to the body. A limitation of the current study consists in the lack of analysis on the bone-implant interface for which specific investigations would be required: currently, the contact between bone and fixture is assumed to be fixed, i.e. no micro motions are considered. Research is ongoing to test the entire device in a clinical study to collect quantitative and qualitative information from patients and surgeons.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信