System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China

Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong
{"title":"System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China","authors":"Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong","doi":"10.1038/s43016-025-01122-1","DOIUrl":null,"url":null,"abstract":"<p>The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO<sub>2</sub> emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO<sub>2</sub> emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01122-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO2 emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO2 emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信