Hydraulically Amplified Rigidity-Adaptive Electrostatic Actuators with High Performance and Smooth Motion Control.

Hu Qilin, Li Yang, Mei Deqing, Luo Tao, Wang Yancheng
{"title":"Hydraulically Amplified Rigidity-Adaptive Electrostatic Actuators with High Performance and Smooth Motion Control.","authors":"Hu Qilin, Li Yang, Mei Deqing, Luo Tao, Wang Yancheng","doi":"10.1089/soro.2024.0114","DOIUrl":null,"url":null,"abstract":"<p><p>Hydraulically amplified self-healing electrostatic (HASEL) actuators are known for their muscle-like activation, rapid operation, and direct electrical control, making them highly versatile for use in soft robotics. While current methods for enhancing HASEL actuator performance largely emphasize material innovation, our approach offers an additional architectural strategy. In this study, we introduce a novel hydraulically amplified rigidity-adaptive electrostatic (HARIE) actuator designed to significantly enhance HASEL actuator performance while maintaining controllability by elucidating the underlying issues of the pull-in instability. Our experimental results indicate that the HARIE actuator achieves a significant improvement, with over a 200% increase in angular output and consistently strong torque compared with HASEL actuators with flexible electrodes. Notably, the maximum step of the HARIE actuator is 21.8°/kV, approximately one third of that of the HASEL actuator with rigid electrodes (62.3°/kV), suggesting smoother motion control. The HARIE actuator's effectiveness is further demonstrated in practical applications; it successfully grasps an orange weighing 15.2 g and a delicate dandelion. Additionally, the actuator's precise targeting capability is evidenced by its ability to manipulate a laser to induce heat accumulation, leading to the balloon's breakdown, thereby showcasing its high level of controllability. The rigidity-adaptive method mitigates the negative impacts of suboptimal materials and demonstrates the potential for significant enhancement when combined with superior materials.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulically amplified self-healing electrostatic (HASEL) actuators are known for their muscle-like activation, rapid operation, and direct electrical control, making them highly versatile for use in soft robotics. While current methods for enhancing HASEL actuator performance largely emphasize material innovation, our approach offers an additional architectural strategy. In this study, we introduce a novel hydraulically amplified rigidity-adaptive electrostatic (HARIE) actuator designed to significantly enhance HASEL actuator performance while maintaining controllability by elucidating the underlying issues of the pull-in instability. Our experimental results indicate that the HARIE actuator achieves a significant improvement, with over a 200% increase in angular output and consistently strong torque compared with HASEL actuators with flexible electrodes. Notably, the maximum step of the HARIE actuator is 21.8°/kV, approximately one third of that of the HASEL actuator with rigid electrodes (62.3°/kV), suggesting smoother motion control. The HARIE actuator's effectiveness is further demonstrated in practical applications; it successfully grasps an orange weighing 15.2 g and a delicate dandelion. Additionally, the actuator's precise targeting capability is evidenced by its ability to manipulate a laser to induce heat accumulation, leading to the balloon's breakdown, thereby showcasing its high level of controllability. The rigidity-adaptive method mitigates the negative impacts of suboptimal materials and demonstrates the potential for significant enhancement when combined with superior materials.

液压放大刚度-高性能平滑运动控制的自适应静电作动器。
液压放大自愈静电(HASEL)致动器以其类似肌肉的激活,快速操作和直接电气控制而闻名,使其在软机器人中用途广泛。虽然目前提高HASEL执行器性能的方法主要强调材料创新,但我们的方法提供了额外的架构策略。在这项研究中,我们介绍了一种新型的液压放大刚性自适应静电(HARIE)致动器,旨在通过阐明拉入不稳定性的潜在问题,显着提高HASEL致动器的性能,同时保持可控性。我们的实验结果表明,HARIE执行器实现了显着的改进,与具有柔性电极的HASEL执行器相比,其角输出增加了200%以上,并且具有持续的强扭矩。值得注意的是,HARIE执行器的最大步长为21.8°/kV,约为刚性电极HASEL执行器(62.3°/kV)的三分之一,表明运动控制更平滑。在实际应用中进一步验证了HARIE执行器的有效性;它成功地抓住了一个重达15.2克的橙子和一朵娇嫩的蒲公英。此外,执行器的精确瞄准能力通过其操纵激光诱导热量积累的能力得到了证明,从而导致气球破裂,从而展示了其高水平的可控性。刚性自适应方法减轻了次优材料的负面影响,并展示了与优质材料结合时显着增强的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信