Acute diffuse axonal injury following repeated mild traumatic brain injury in juvenile rats.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2025-03-01 Epub Date: 2025-02-10 DOI:10.1152/jn.00482.2024
Erin McDonagh, Eric Eyolfson, Justin Brand, Sandy R Shultz, Brian R Christie
{"title":"Acute diffuse axonal injury following repeated mild traumatic brain injury in juvenile rats.","authors":"Erin McDonagh, Eric Eyolfson, Justin Brand, Sandy R Shultz, Brian R Christie","doi":"10.1152/jn.00482.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mild traumatic brain injuries (mTBIs) are caused by biomechanical forces being transmitted to the brain, causing neuronal connections to be subjected to sheering forces. The injury severity can be affected by a number of factors that include age and sex, however, there remains a paucity of data on how repeated mTBI (r-mTBI) impacts the female brain. In these studies, male and female juvenile rats [<i>postnatal day</i> (PND) <i>25</i>-<i>26</i>] were administered a total of eight mTBIs over a 2-day period. Following each mTBI, rats were immediately assessed for acute neurological impairment. After eight mTBIs were completed, the Barnes maze was used to assess spatial learning and memory. Axonal injury was assessed using silver stain histological analyses. We found that injured females exhibited less acute neurological impairment than males. Three days after the final r-mTBI, no significant differences were observed in spatial learning and memory, with all animals showing similar times to locate the escape platform on the reversal trial, additionally there was no main effect of sex in the Barnes maze. Silver stain uptake was significantly increased in the optic tract, corpus callosum, and cortex compared with sham animals at seven days postinjury in a sex-specific manner. Females showed significant increase in all three regions following r-mTBI, whereas males only showed a significant increase in staining in the optic tract. Overall, these findings show that females may be more susceptible to axonal damage than males, and that cognitive deficits were not evident in this population following r-mTBI. These results indicate that there may be benefits in examining biomarkers that reflect axonal injury and the therapies that target reducing axonal degradation.<b>NEW & NOTEWORTHY</b> Diffuse axonal injury is a hallmark feature of all severities of traumatic brain injury (TBI) yet, in preclinical mild (m)TBI research no studies have yet investigated axonal damage with silver stain immunohistochemistry in female animals. This is a critical gap in the literature as recent studies suggest that females experience mTBI more frequently than males. We found that repeated mTBI (r-mTBI) caused significant diffuse axonal injury that was more pronounced in females compared with males.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"881-891"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00482.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mild traumatic brain injuries (mTBIs) are caused by biomechanical forces being transmitted to the brain, causing neuronal connections to be subjected to sheering forces. The injury severity can be affected by a number of factors that include age and sex, however, there remains a paucity of data on how repeated mTBI (r-mTBI) impacts the female brain. In these studies, male and female juvenile rats [postnatal day (PND) 25-26] were administered a total of eight mTBIs over a 2-day period. Following each mTBI, rats were immediately assessed for acute neurological impairment. After eight mTBIs were completed, the Barnes maze was used to assess spatial learning and memory. Axonal injury was assessed using silver stain histological analyses. We found that injured females exhibited less acute neurological impairment than males. Three days after the final r-mTBI, no significant differences were observed in spatial learning and memory, with all animals showing similar times to locate the escape platform on the reversal trial, additionally there was no main effect of sex in the Barnes maze. Silver stain uptake was significantly increased in the optic tract, corpus callosum, and cortex compared with sham animals at seven days postinjury in a sex-specific manner. Females showed significant increase in all three regions following r-mTBI, whereas males only showed a significant increase in staining in the optic tract. Overall, these findings show that females may be more susceptible to axonal damage than males, and that cognitive deficits were not evident in this population following r-mTBI. These results indicate that there may be benefits in examining biomarkers that reflect axonal injury and the therapies that target reducing axonal degradation.NEW & NOTEWORTHY Diffuse axonal injury is a hallmark feature of all severities of traumatic brain injury (TBI) yet, in preclinical mild (m)TBI research no studies have yet investigated axonal damage with silver stain immunohistochemistry in female animals. This is a critical gap in the literature as recent studies suggest that females experience mTBI more frequently than males. We found that repeated mTBI (r-mTBI) caused significant diffuse axonal injury that was more pronounced in females compared with males.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信