Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Frontiers in Human Neuroscience Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1484470
Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim
{"title":"Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.","authors":"Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim","doi":"10.3389/fnhum.2025.1484470","DOIUrl":null,"url":null,"abstract":"<p><p>The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using \"BruteExtraTree\": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1484470"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1484470","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using "BruteExtraTree": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信