Investigating the hypoglycaemic potential of processed apple and acarbose combination in vitro, ex vivo, and in vivo: the role of quercetin-3-glucoside in steering α-glucosidase inhibition.
Umberto Lanza, Marilisa Alongi, Barbara Frossi, Carlo Pucillo, Monica Anese, Maria Cristina Nicoli
{"title":"Investigating the hypoglycaemic potential of processed apple and acarbose combination <i>in vitro</i>, <i>ex vivo</i>, and <i>in vivo</i>: the role of quercetin-3-glucoside in steering α-glucosidase inhibition.","authors":"Umberto Lanza, Marilisa Alongi, Barbara Frossi, Carlo Pucillo, Monica Anese, Maria Cristina Nicoli","doi":"10.1039/d4fo06307d","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the interaction between apple juice (AJ) and acarbose (A) in modulating glycaemic responses, with the aim of validating <i>in vivo</i> results previously observed <i>in vitro</i>. When administered to rats, AJ alone reduced the glycemic curve, but the combination of AJ with increasing doses of A resulted in higher glycemic responses, suggesting an antagonistic interaction in α-glucosidase inhibition. To explore this mechanism, quercetin-3-glucoside (Q-3-G), a major phenolic compound in AJ, was tested for α-glucosidase inhibition <i>in vitro</i>. Q-3-G and A together showed reduced inhibitory efficacy compared to either compound alone, consistent with <i>in vivo</i> findings. <i>Ex vivo</i> studies in Caco-2 cells further supported this antagonism. Sucrose hydrolysis experiments showed that low concentrations of Q-3-G increased residual sucrose when combined with moderate concentrations of A, but higher concentrations of Q-3-G favoured sucrose hydrolysis regardless of A levels. The results highlight the antagonistic interaction between Q-3-G and A in inhibiting α-glucosidase and emphasise the need to combine <i>in vitro</i>, <i>ex vivo</i> and <i>in vivo</i> studies to evaluate food-drug interactions. This comprehensive approach is essential before advocating the use of functional foods alongside pharmacological therapies.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo06307d","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the interaction between apple juice (AJ) and acarbose (A) in modulating glycaemic responses, with the aim of validating in vivo results previously observed in vitro. When administered to rats, AJ alone reduced the glycemic curve, but the combination of AJ with increasing doses of A resulted in higher glycemic responses, suggesting an antagonistic interaction in α-glucosidase inhibition. To explore this mechanism, quercetin-3-glucoside (Q-3-G), a major phenolic compound in AJ, was tested for α-glucosidase inhibition in vitro. Q-3-G and A together showed reduced inhibitory efficacy compared to either compound alone, consistent with in vivo findings. Ex vivo studies in Caco-2 cells further supported this antagonism. Sucrose hydrolysis experiments showed that low concentrations of Q-3-G increased residual sucrose when combined with moderate concentrations of A, but higher concentrations of Q-3-G favoured sucrose hydrolysis regardless of A levels. The results highlight the antagonistic interaction between Q-3-G and A in inhibiting α-glucosidase and emphasise the need to combine in vitro, ex vivo and in vivo studies to evaluate food-drug interactions. This comprehensive approach is essential before advocating the use of functional foods alongside pharmacological therapies.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.