Concrete billiard arrays of polynomial type and Leonard systems

IF 1 3区 数学 Q1 MATHEMATICS
Jimmy Vineyard
{"title":"Concrete billiard arrays of polynomial type and Leonard systems","authors":"Jimmy Vineyard","doi":"10.1016/j.laa.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>d</em> denote a nonnegative integer and let <span><math><mi>F</mi></math></span> denote a field. Let <em>V</em> denote a <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional vector space over <span><math><mi>F</mi></math></span>. Given an ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> of the eigenvalues of a multiplicity-free linear map <span><math><mi>A</mi><mo>:</mo><mi>V</mi><mo>→</mo><mi>V</mi></math></span>, we construct a Concrete Billiard Array <span><math><mi>L</mi></math></span> with the property that for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span>, the <span><math><msup><mrow><mi>i</mi></mrow><mrow><mi>th</mi></mrow></msup></math></span> vector on its bottom border is in the <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-eigenspace of <em>A</em>. The Concrete Billiard Array <span><math><mi>L</mi></math></span> is said to have polynomial type. We also show the following. Assume that there exists a Leonard system <span><math><mi>Φ</mi><mo>=</mo><mo>(</mo><mi>A</mi><mo>;</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>;</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>;</mo><msubsup><mrow><mo>{</mo><msubsup><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the primitive idempotent of <em>A</em> corresponding to <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span>. Then, we show that after a suitable normalization, the left (resp. right) boundary of <span><math><mi>L</mi></math></span> corresponds to the Φ-split (resp. <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⇓</mo></mrow></msup></math></span>-split) decomposition of <em>V</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 296-309"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000564","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let d denote a nonnegative integer and let F denote a field. Let V denote a (d+1)-dimensional vector space over F. Given an ordering {θi}i=0d of the eigenvalues of a multiplicity-free linear map A:VV, we construct a Concrete Billiard Array L with the property that for 0id, the ith vector on its bottom border is in the θi-eigenspace of A. The Concrete Billiard Array L is said to have polynomial type. We also show the following. Assume that there exists a Leonard system Φ=(A;{Ei}i=0d;A;{Ei}i=0d) where Ei is the primitive idempotent of A corresponding to θi for 0id. Then, we show that after a suitable normalization, the left (resp. right) boundary of L corresponds to the Φ-split (resp. Φ-split) decomposition of V.
多项式型和伦纳德系统的具体台球阵列
设d表示一个非负整数,设F表示一个场。设V表示f上的a (d+1)维向量空间。给定无多重线性映射a:V→V的特征值的序{θi}i=0d,构造一个具体台球数组L,其下边界上的第i个向量在a的θi特征空间中,且当0≤i≤d时,该数组L具有多项式型。我们还展示了以下内容。假设存在一个Leonard系统Φ=(a;{Ei}i=0d; a;{Ei}i=0d),其中Ei是θi对应于0≤i≤d时a的本原幂等函数。然后,我们证明了在适当的归一化之后,左(resp)。右)的边界对应于Φ-split(参见。Φ全文-分裂)分解V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信