{"title":"Spectral extremal problems for graphs with bounded clique number","authors":"Tingting Wang, Lihua Feng, Lu Lu","doi":"10.1016/j.laa.2025.01.043","DOIUrl":null,"url":null,"abstract":"<div><div>For a family of graphs <span><math><mi>F</mi></math></span>, a graph is called <span><math><mi>F</mi></math></span>-free if it contains no subgraph isomorphic to any graph in <span><math><mi>F</mi></math></span>. For two integers <em>n</em> and <em>r</em>, let <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be the set of graphs on <em>n</em> vertices with clique number at most <em>r</em>. Denote by<span><span><span><math><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>G</mi><mspace></mspace><mrow><mtext>is </mtext><mi>F</mi><mtext>-free</mtext></mrow><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the spectral radius of <em>G</em>. Furthermore, denote by <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>|</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>G</mi><mtext> is </mtext><mi>F</mi><mtext>-</mtext><mtext>free</mtext><mo>}</mo></math></span> the set of extremal graphs. In this paper, we first give a spectral Erdös-Sós theorem in <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, that is, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, if a graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> with <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>λ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, then it contains all trees on <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices or <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></math></span> vertices unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> is the join of the Turán graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and the independent set <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>. Next, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, we completely determine <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, that is <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 273-295"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a family of graphs , a graph is called -free if it contains no subgraph isomorphic to any graph in . For two integers n and r, let be the set of graphs on n vertices with clique number at most r. Denote by where is the spectral radius of G. Furthermore, denote by the set of extremal graphs. In this paper, we first give a spectral Erdös-Sós theorem in , that is, for fixed and sufficiently large n, if a graph with , then it contains all trees on vertices or vertices unless , where is the join of the Turán graph and the independent set . Next, for fixed and sufficiently large n, we completely determine , that is .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.