Molecular mechanisms of Lycii Fructus (Goji berries) against xanthine dehydrogenase in hyperuricemia management: Integrating computational, metabolomic, and experimental approaches
Shuxuan Yang , Qinghong Chen , Yanting You , Chuanghai Wu , Meilin Chen , Angela Wei Hong Yang , Xiaomin Sun , Andrew Hung , Xiaoshan Zhao , Hong Li
{"title":"Molecular mechanisms of Lycii Fructus (Goji berries) against xanthine dehydrogenase in hyperuricemia management: Integrating computational, metabolomic, and experimental approaches","authors":"Shuxuan Yang , Qinghong Chen , Yanting You , Chuanghai Wu , Meilin Chen , Angela Wei Hong Yang , Xiaomin Sun , Andrew Hung , Xiaoshan Zhao , Hong Li","doi":"10.1016/j.foodres.2025.115926","DOIUrl":null,"url":null,"abstract":"<div><div>Lycii Fructus (LF), commonly known as Goji berries, has shown potential for managing hyperuricemia, though its underlying mechanisms remain poorly understood. This study employs a combination of network-based systems pharmacology, computer-aided drug discovery, untargeted metabolomics and experiments to explore the urate-lowering effects of LF. Molecular docking simulations of 3,760 LF compound-target interactions identified xanthine dehydrogenase (XDH) as a key target. Among the compounds, glycitein exhibited the highest binding affinity in molecular dynamics simulations. Metabolomics confirmed the presence of glycitein in LF particles, and it significantly reduced urate levels in hyperuricemia zebrafish models. Further <em>in vitro</em> assays and Cellular Thermal Shift Assays corroborated its inhibitory effect on xanthine oxidase. These findings suggest that glycitein may serve as a novel inhibitor of xanthine oxidase, with potential applications in nutraceuticals, functional foods, and drug development for hyperuricemia.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"204 ","pages":"Article 115926"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925002637","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lycii Fructus (LF), commonly known as Goji berries, has shown potential for managing hyperuricemia, though its underlying mechanisms remain poorly understood. This study employs a combination of network-based systems pharmacology, computer-aided drug discovery, untargeted metabolomics and experiments to explore the urate-lowering effects of LF. Molecular docking simulations of 3,760 LF compound-target interactions identified xanthine dehydrogenase (XDH) as a key target. Among the compounds, glycitein exhibited the highest binding affinity in molecular dynamics simulations. Metabolomics confirmed the presence of glycitein in LF particles, and it significantly reduced urate levels in hyperuricemia zebrafish models. Further in vitro assays and Cellular Thermal Shift Assays corroborated its inhibitory effect on xanthine oxidase. These findings suggest that glycitein may serve as a novel inhibitor of xanthine oxidase, with potential applications in nutraceuticals, functional foods, and drug development for hyperuricemia.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.