Data-driven probabilistic seismic demand prediction and sustainability optimization of stone columns for liquefaction mitigation in regional mildly sloping ground

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhijian Qiu , Junrui Zhu , Ahmed Ebeido , Athul Prabhakaran , Yewei Zheng
{"title":"Data-driven probabilistic seismic demand prediction and sustainability optimization of stone columns for liquefaction mitigation in regional mildly sloping ground","authors":"Zhijian Qiu ,&nbsp;Junrui Zhu ,&nbsp;Ahmed Ebeido ,&nbsp;Athul Prabhakaran ,&nbsp;Yewei Zheng","doi":"10.1016/j.compgeo.2025.107125","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing need for efficient mitigation strategies in liquefaction-prone regions, ensuring both seismic resilience and sustainability of infrastructure has become increasingly significant. This paper presents a data-driven probabilistic seismic demand model (PSDM) prediction and sustainability optimization framework to mitigate liquefaction-induced lateral deformation in regional mildly sloping ground improved with stone columns. The framework integrates finite element (FE) simulations with machine learning (ML) models, generating 1,200 ground FE models based on the key site attributes, such as ground inclination, soil properties, and stone column configurations. The performance of the selected ML models is evaluated through hyperparameter tuning by <em>k</em>-fold cross-validation, with the artificial neural network (ANN) outperforming other models in accurately predicting the PSDM. Subsequently, this framework is applied to a set of representative mildly sloping ground sites, enabling rapid PSDM prediction for each site with varying site attributes. Moreover, by incorporating cost and sustainability metrics, multi-objective optimization is performed using the developed ANN predictive model to maximize seismic performance while minimizing total carbon emissions and costs associated with ground improvement. Overall, the framework allows for rapid and accurate PSDM prediction and regional optimization, facilitating the identification of the optimal stone column configurations for efficient and sustainable liquefaction mitigation.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107125"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000746","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing need for efficient mitigation strategies in liquefaction-prone regions, ensuring both seismic resilience and sustainability of infrastructure has become increasingly significant. This paper presents a data-driven probabilistic seismic demand model (PSDM) prediction and sustainability optimization framework to mitigate liquefaction-induced lateral deformation in regional mildly sloping ground improved with stone columns. The framework integrates finite element (FE) simulations with machine learning (ML) models, generating 1,200 ground FE models based on the key site attributes, such as ground inclination, soil properties, and stone column configurations. The performance of the selected ML models is evaluated through hyperparameter tuning by k-fold cross-validation, with the artificial neural network (ANN) outperforming other models in accurately predicting the PSDM. Subsequently, this framework is applied to a set of representative mildly sloping ground sites, enabling rapid PSDM prediction for each site with varying site attributes. Moreover, by incorporating cost and sustainability metrics, multi-objective optimization is performed using the developed ANN predictive model to maximize seismic performance while minimizing total carbon emissions and costs associated with ground improvement. Overall, the framework allows for rapid and accurate PSDM prediction and regional optimization, facilitating the identification of the optimal stone column configurations for efficient and sustainable liquefaction mitigation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信