{"title":"Siponimod inhibits microglial inflammasome activation.","authors":"Hiroyasu Komiya, Hideyuki Takeuchi, Akihiro Ogasawara, Yuki Ogawa, Shun Kubota, Shunta Hashiguchi, Keita Takahashi, Misako Kunii, Kenichi Tanaka, Mikiko Tada, Hiroshi Doi, Fumiaki Tanaka","doi":"10.1016/j.neures.2025.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Siponimod is the first oral drug approved for active secondary progressive multiple sclerosis. It acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P<sub>1</sub>) through S1P<sub>1</sub> internalization, and also serves an agonist of S1P<sub>5</sub>; however, the detailed mechanisms of its therapeutic effects on glial cells have yet to be elucidated. In this study, we investigated the anti-inflammatory mechanism of siponimod in microglia. Pretreatment with either siponimod or the S1P<sub>1</sub> antagonist W146 significantly suppressed the production of interleukin-1β in activated microglia stimulated with lipopolysaccharide plus nigericin, an inflammasome activator. Furthermore, siponimod treatment reduced the protein levels of cleaved caspase-1 and inhibited the formation of aggregates of apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC specks) in microglia. Our data indicate that siponimod achieves its anti-inflammatory effects by inhibiting inflammasome activation in microglia via S1P<sub>1</sub> antagonism. This process is inferred to play a crucial role in mitigating the secondary progression of multiple sclerosis, where microglial activation in the gray matter is considered a key pathological factor.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2025.02.002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Siponimod is the first oral drug approved for active secondary progressive multiple sclerosis. It acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) through S1P1 internalization, and also serves an agonist of S1P5; however, the detailed mechanisms of its therapeutic effects on glial cells have yet to be elucidated. In this study, we investigated the anti-inflammatory mechanism of siponimod in microglia. Pretreatment with either siponimod or the S1P1 antagonist W146 significantly suppressed the production of interleukin-1β in activated microglia stimulated with lipopolysaccharide plus nigericin, an inflammasome activator. Furthermore, siponimod treatment reduced the protein levels of cleaved caspase-1 and inhibited the formation of aggregates of apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC specks) in microglia. Our data indicate that siponimod achieves its anti-inflammatory effects by inhibiting inflammasome activation in microglia via S1P1 antagonism. This process is inferred to play a crucial role in mitigating the secondary progression of multiple sclerosis, where microglial activation in the gray matter is considered a key pathological factor.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.