Microglia TRPC1 SUMOylation drives neuroinflammation after stroke by modulating NLRP3 activity via increasing TRPC1 interaction with ARRB2

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Huinan Zhang , Xinzhe Du , Tian Gao , Xing Wang , Huifeng Zhang , Manyang Yu , Jing Huang
{"title":"Microglia TRPC1 SUMOylation drives neuroinflammation after stroke by modulating NLRP3 activity via increasing TRPC1 interaction with ARRB2","authors":"Huinan Zhang ,&nbsp;Xinzhe Du ,&nbsp;Tian Gao ,&nbsp;Xing Wang ,&nbsp;Huifeng Zhang ,&nbsp;Manyang Yu ,&nbsp;Jing Huang","doi":"10.1016/j.nbd.2025.106833","DOIUrl":null,"url":null,"abstract":"<div><div>Microglial canonical transient receptor potential channel 1 (TRPC1) has been proposed to influence neuroinflammation after cerebral ischemia and reperfusion injury (CIRI), however, the underlying mechanism remains poorly understood. This study demonstrates that TRPC1 is modified by small ubiquitin-related modifier (SUMO)ylation. Our findings suggest a notable increase in microglial TRPC1 SUMOylation within both the middle cerebral artery occlusion reperfusion (MCAO/R) model and the in vitro oxygen-glucose deprivation/regeneration model. Mice with a loss of TRPC1 SUMOylation in microglia exhibited improved stroke outcomes including reduced behavior deficits, infarct volume, blood brain barrier damage as well as neuronal apoptosis. Mechanistically, SUMOylation of microglial TRPC1 exacerbated neutrophil infiltration into the peri-infarct area. Additionally, SUMOylated TRPC1 activates the Nod-like receptor protein (NLRP) 3 signaling pathway in microglia and stimulates multiple CC-chemokine ligands and C-X-C motif ligand chemokines after MCAO/R. SUMOylated TRPC1 facilitates the interaction between TRPC1 and β-arrestin2 (ARRB2), a negative regulator of NLRP3 inflammasome, which disrupts the NLPR3/ARRB2 complex and stimulates the activation of the NLPR3 signaling pathway. Furthermore, ARRB2 directly binds to the residues 46 to 61 of TRPC1 N terminus, which is enhanced by TRPC1 SUMOylation. Collectively, our findings demonstrate a previously unidentified mechanism by which SUMOylated TRPC1 in microglia regulates leukocyte infiltration after stroke, suggesting that the inhibition of microglial TRPC1 SUMOylation may provide therapeutic benefits for CIRI.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"206 ","pages":"Article 106833"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096999612500049X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microglial canonical transient receptor potential channel 1 (TRPC1) has been proposed to influence neuroinflammation after cerebral ischemia and reperfusion injury (CIRI), however, the underlying mechanism remains poorly understood. This study demonstrates that TRPC1 is modified by small ubiquitin-related modifier (SUMO)ylation. Our findings suggest a notable increase in microglial TRPC1 SUMOylation within both the middle cerebral artery occlusion reperfusion (MCAO/R) model and the in vitro oxygen-glucose deprivation/regeneration model. Mice with a loss of TRPC1 SUMOylation in microglia exhibited improved stroke outcomes including reduced behavior deficits, infarct volume, blood brain barrier damage as well as neuronal apoptosis. Mechanistically, SUMOylation of microglial TRPC1 exacerbated neutrophil infiltration into the peri-infarct area. Additionally, SUMOylated TRPC1 activates the Nod-like receptor protein (NLRP) 3 signaling pathway in microglia and stimulates multiple CC-chemokine ligands and C-X-C motif ligand chemokines after MCAO/R. SUMOylated TRPC1 facilitates the interaction between TRPC1 and β-arrestin2 (ARRB2), a negative regulator of NLRP3 inflammasome, which disrupts the NLPR3/ARRB2 complex and stimulates the activation of the NLPR3 signaling pathway. Furthermore, ARRB2 directly binds to the residues 46 to 61 of TRPC1 N terminus, which is enhanced by TRPC1 SUMOylation. Collectively, our findings demonstrate a previously unidentified mechanism by which SUMOylated TRPC1 in microglia regulates leukocyte infiltration after stroke, suggesting that the inhibition of microglial TRPC1 SUMOylation may provide therapeutic benefits for CIRI.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信