Common and unique network basis for externally and internally driven flexibility in cognition: From a developmental perspective

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Ziyi Huang , Dazhi Yin
{"title":"Common and unique network basis for externally and internally driven flexibility in cognition: From a developmental perspective","authors":"Ziyi Huang ,&nbsp;Dazhi Yin","doi":"10.1016/j.dcn.2025.101528","DOIUrl":null,"url":null,"abstract":"<div><div>Flexibility is a hallmark of cognitive control and can be driven externally and internally, corresponding to reactive and spontaneous flexibility. However, the convergence and divergence between these two types of flexibility and their underlying neural basis during development remain largely unknown. In this study, we aimed to determine the common and unique networks for reactive and spontaneous flexibility as a function of age and sex, leveraging both cross-sectional and longitudinal resting-state functional magnetic resonance imaging datasets with different temporal resolutions (N = 249, 6–35 years old). Functional connectivity strength and nodal flexibility, derived from static and dynamic frameworks respectively, were utilized. We found similar quadratic effects of age on reactive and spontaneous flexibility, which were mediated by the functional connectivity strength and nodal flexibility of the frontoparietal network. Divergence was observed, with the nodal flexibility of the ventral attention network at the baseline visit uniquely predicting the increase in reactive flexibility 24–30 months later, while the nodal flexibility or functional connectivity strength of the dorsal attention network could specifically predict the increase in spontaneous flexibility. Sex differences were found in tasks measuring reactive and spontaneous flexibility simultaneously, which were moderated by the nodal flexibility of the dorsal attention network. This study advances our understanding of distinct types of flexibility in cognition and their underlying mechanisms throughout developmental stages. Our findings also suggest the importance of studying specific types of cognitive flexibility abnormalities in developmental neuropsychiatric disorders.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"72 ","pages":"Article 101528"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000234","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flexibility is a hallmark of cognitive control and can be driven externally and internally, corresponding to reactive and spontaneous flexibility. However, the convergence and divergence between these two types of flexibility and their underlying neural basis during development remain largely unknown. In this study, we aimed to determine the common and unique networks for reactive and spontaneous flexibility as a function of age and sex, leveraging both cross-sectional and longitudinal resting-state functional magnetic resonance imaging datasets with different temporal resolutions (N = 249, 6–35 years old). Functional connectivity strength and nodal flexibility, derived from static and dynamic frameworks respectively, were utilized. We found similar quadratic effects of age on reactive and spontaneous flexibility, which were mediated by the functional connectivity strength and nodal flexibility of the frontoparietal network. Divergence was observed, with the nodal flexibility of the ventral attention network at the baseline visit uniquely predicting the increase in reactive flexibility 24–30 months later, while the nodal flexibility or functional connectivity strength of the dorsal attention network could specifically predict the increase in spontaneous flexibility. Sex differences were found in tasks measuring reactive and spontaneous flexibility simultaneously, which were moderated by the nodal flexibility of the dorsal attention network. This study advances our understanding of distinct types of flexibility in cognition and their underlying mechanisms throughout developmental stages. Our findings also suggest the importance of studying specific types of cognitive flexibility abnormalities in developmental neuropsychiatric disorders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信