Hydroxylation of dihydromyricetin via Beauveria bassiana fermentation enhances its efficacy in improving insulin signaling: Insights into inflammation, oxidative stress, and endoplasmic reticulum stress

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yong Cheng , Junhao Wu , Yueqing Gao , Beijun Ang , Liduan Yin , Tong Wang , Qiuming Chen , Zhaojun Wang , Maomao Zeng , Jie Chen , Zhiyong He , Fengfeng Wu
{"title":"Hydroxylation of dihydromyricetin via Beauveria bassiana fermentation enhances its efficacy in improving insulin signaling: Insights into inflammation, oxidative stress, and endoplasmic reticulum stress","authors":"Yong Cheng ,&nbsp;Junhao Wu ,&nbsp;Yueqing Gao ,&nbsp;Beijun Ang ,&nbsp;Liduan Yin ,&nbsp;Tong Wang ,&nbsp;Qiuming Chen ,&nbsp;Zhaojun Wang ,&nbsp;Maomao Zeng ,&nbsp;Jie Chen ,&nbsp;Zhiyong He ,&nbsp;Fengfeng Wu","doi":"10.1016/j.foodres.2025.115940","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic metabolic diseases, particularly insulin resistance (IR) and diabetes, pose significant global health challenges. This study introduces a novel hydroxylated dihydromyricetin (DHM) derivative, 8-hydroxy-DHM (H-DHM), produced <em>via</em> microbial fermentation using <em>Beauveria bassiana</em>. Notably, hydroxylation significantly enhances the efficacy of DHM in glucose consumption, glycogen synthesis, and glucose transport, while inhibiting gluconeogenesis in an IR-HepG2 cell model. This indicates that hydroxylation of DHM can enhance its regulation of glucose metabolism. Mechanistic investigations reveal that H-DHM regulates the JNK/PI3K/AKT signaling pathway by reducing inflammation, oxidative stress, and endoplasmic reticulum stress. These findings highlight the potential of hydroxylated DHM as a promising candidate for dietary and clinical interventions in IR management. Furthermore, this research provides new insights into the modification of natural flavonoids through microbial fermentation, presenting an innovative strategy for managing and preventing chronic metabolic diseases.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"204 ","pages":"Article 115940"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925002777","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic metabolic diseases, particularly insulin resistance (IR) and diabetes, pose significant global health challenges. This study introduces a novel hydroxylated dihydromyricetin (DHM) derivative, 8-hydroxy-DHM (H-DHM), produced via microbial fermentation using Beauveria bassiana. Notably, hydroxylation significantly enhances the efficacy of DHM in glucose consumption, glycogen synthesis, and glucose transport, while inhibiting gluconeogenesis in an IR-HepG2 cell model. This indicates that hydroxylation of DHM can enhance its regulation of glucose metabolism. Mechanistic investigations reveal that H-DHM regulates the JNK/PI3K/AKT signaling pathway by reducing inflammation, oxidative stress, and endoplasmic reticulum stress. These findings highlight the potential of hydroxylated DHM as a promising candidate for dietary and clinical interventions in IR management. Furthermore, this research provides new insights into the modification of natural flavonoids through microbial fermentation, presenting an innovative strategy for managing and preventing chronic metabolic diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信