Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Wei Cui , Yong Xie , Yinghui Zhang , Xinlian Su , Tianqi Cui , Xingguang Chen , Zhaoming Wang , Feiran Xu , Hui Zhou , Baocai Xu
{"title":"Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations","authors":"Wei Cui ,&nbsp;Yong Xie ,&nbsp;Yinghui Zhang ,&nbsp;Xinlian Su ,&nbsp;Tianqi Cui ,&nbsp;Xingguang Chen ,&nbsp;Zhaoming Wang ,&nbsp;Feiran Xu ,&nbsp;Hui Zhou ,&nbsp;Baocai Xu","doi":"10.1016/j.foodres.2025.115953","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving the therapeutic goal of treating diseases by effectively controlling the excessive accumulation of intracellular free radicals is still very challenging, which motivates researchers to develop efficient novel antioxidant peptides from sustainable resources continuously. This study first pioneered a probiotic-assisted enzymatic hydrolysis of hemoglobin, which obtained 149 peptides. Two antioxidant peptides were rapidly screened using advanced molecular dynamics simulation techniques, revealing their molecular interaction mechanisms with Keap1. It was found that GLWGKV occupied six binding sites for Keap1 to form hydrogen bonds with Nrf2, whereas LIVYPW occupied two binding sites, and the binding free energy of GLWGKV to Keap1 was lower binding more stable. Cellular experiments confirmed that GLWGKV up-regulated the expression of related proteins and increased antioxidant enzyme activities, thereby attenuating H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in Caco-2 cells. This research increases the economic added value of animal blood and demonstrates its great potential for development in functional foods.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"204 ","pages":"Article 115953"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096399692500290X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving the therapeutic goal of treating diseases by effectively controlling the excessive accumulation of intracellular free radicals is still very challenging, which motivates researchers to develop efficient novel antioxidant peptides from sustainable resources continuously. This study first pioneered a probiotic-assisted enzymatic hydrolysis of hemoglobin, which obtained 149 peptides. Two antioxidant peptides were rapidly screened using advanced molecular dynamics simulation techniques, revealing their molecular interaction mechanisms with Keap1. It was found that GLWGKV occupied six binding sites for Keap1 to form hydrogen bonds with Nrf2, whereas LIVYPW occupied two binding sites, and the binding free energy of GLWGKV to Keap1 was lower binding more stable. Cellular experiments confirmed that GLWGKV up-regulated the expression of related proteins and increased antioxidant enzyme activities, thereby attenuating H2O2-induced oxidative damage in Caco-2 cells. This research increases the economic added value of animal blood and demonstrates its great potential for development in functional foods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信