Mengge Ma , Yuanrong Zhan , Lixiang Zheng , Zhou Chen , Aijin Ma , Siting Li , Yingmin Jia
{"title":"Effects of Diaphragma Juglandis Fructus polysaccharide against advanced glycation end-products: Structural characterization and underlying anti-glycation mechanism","authors":"Mengge Ma , Yuanrong Zhan , Lixiang Zheng , Zhou Chen , Aijin Ma , Siting Li , Yingmin Jia","doi":"10.1016/j.foodres.2025.115880","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced glycation end-products (AGEs) generated during protein glycation trigger significant concerns for human health. Exploring safe and effective natural ingredients exhibiting excellent AGEs inhibition has become a promising way to overcome this issue. This research focused on the structural features of <em>Diaphragma Juglandis</em> Fructus polysaccharide (FJP-1) as well as its AGE-inhibiting capacity and mechanisms. The results demonstrated that FJP-1 with a Mw of 22.54 kDa was composed of galactose (Gal), rhamnose (Rha), glucuronic acid (Glc-UA), galacturonic acid (Gal-UA), glucose (Glc) and arabinose (Ara) at a molar ratio of 9.58:3.52:2.72:74.95:1.52:7.71. Its backbone was probably composed of → 4)-Galp-UA-(1→, with branches of → 4,6)-Galp-(1 → and → 4)-Glcp-(1→. And the terminal branches were T-Rhap-(1→), T-Galp-(1→) and T-Araf. In three in vitro models of anti-glycosylation, FJP-1 effectively inhibited the formation of total and special fluorescent AGEs, reduced fructosamine levels, and prevented structural modifications, oxidation, and cross-linking of the protein. Mechanistic and multispectral assays elucidated that the anti-glycative mechanisms of FJP-1 were achieved by capturing methylglyoxal, scavenging free radicals, and binding to bovine serum albumin to form adducts. Pearson’s correlation analyses showed that there were positive correlations between FJP-1′s antioxidant property with the AGEs formation. This study demonstrated that FJP-1 is a potential AGEs inhibitor for development of functional foods and treatment various diseases mediated by AGEs and oxidative stress.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"204 ","pages":"Article 115880"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925002170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced glycation end-products (AGEs) generated during protein glycation trigger significant concerns for human health. Exploring safe and effective natural ingredients exhibiting excellent AGEs inhibition has become a promising way to overcome this issue. This research focused on the structural features of Diaphragma Juglandis Fructus polysaccharide (FJP-1) as well as its AGE-inhibiting capacity and mechanisms. The results demonstrated that FJP-1 with a Mw of 22.54 kDa was composed of galactose (Gal), rhamnose (Rha), glucuronic acid (Glc-UA), galacturonic acid (Gal-UA), glucose (Glc) and arabinose (Ara) at a molar ratio of 9.58:3.52:2.72:74.95:1.52:7.71. Its backbone was probably composed of → 4)-Galp-UA-(1→, with branches of → 4,6)-Galp-(1 → and → 4)-Glcp-(1→. And the terminal branches were T-Rhap-(1→), T-Galp-(1→) and T-Araf. In three in vitro models of anti-glycosylation, FJP-1 effectively inhibited the formation of total and special fluorescent AGEs, reduced fructosamine levels, and prevented structural modifications, oxidation, and cross-linking of the protein. Mechanistic and multispectral assays elucidated that the anti-glycative mechanisms of FJP-1 were achieved by capturing methylglyoxal, scavenging free radicals, and binding to bovine serum albumin to form adducts. Pearson’s correlation analyses showed that there were positive correlations between FJP-1′s antioxidant property with the AGEs formation. This study demonstrated that FJP-1 is a potential AGEs inhibitor for development of functional foods and treatment various diseases mediated by AGEs and oxidative stress.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.