Effects of Diaphragma Juglandis Fructus polysaccharide against advanced glycation end-products: Structural characterization and underlying anti-glycation mechanism

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Mengge Ma , Yuanrong Zhan , Lixiang Zheng , Zhou Chen , Aijin Ma , Siting Li , Yingmin Jia
{"title":"Effects of Diaphragma Juglandis Fructus polysaccharide against advanced glycation end-products: Structural characterization and underlying anti-glycation mechanism","authors":"Mengge Ma ,&nbsp;Yuanrong Zhan ,&nbsp;Lixiang Zheng ,&nbsp;Zhou Chen ,&nbsp;Aijin Ma ,&nbsp;Siting Li ,&nbsp;Yingmin Jia","doi":"10.1016/j.foodres.2025.115880","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced glycation end-products (AGEs) generated during protein glycation trigger significant concerns for human health. Exploring safe and effective natural ingredients exhibiting excellent AGEs inhibition has become a promising way to overcome this issue. This research focused on the structural features of <em>Diaphragma Juglandis</em> Fructus polysaccharide (FJP-1) as well as its AGE-inhibiting capacity and mechanisms. The results demonstrated that FJP-1 with a Mw of 22.54 kDa was composed of galactose (Gal), rhamnose (Rha), glucuronic acid (Glc-UA), galacturonic acid (Gal-UA), glucose (Glc) and arabinose (Ara) at a molar ratio of 9.58:3.52:2.72:74.95:1.52:7.71. Its backbone was probably composed of → 4)-Galp-UA-(1→, with branches of → 4,6)-Galp-(1 → and → 4)-Glcp-(1→. And the terminal branches were T-Rhap-(1→), T-Galp-(1→) and T-Araf. In three in vitro models of anti-glycosylation, FJP-1 effectively inhibited the formation of total and special fluorescent AGEs, reduced fructosamine levels, and prevented structural modifications, oxidation, and cross-linking of the protein. Mechanistic and multispectral assays elucidated that the anti-glycative mechanisms of FJP-1 were achieved by capturing methylglyoxal, scavenging free radicals, and binding to bovine serum albumin to form adducts. Pearson’s correlation analyses showed that there were positive correlations between FJP-1′s antioxidant property with the AGEs formation. This study demonstrated that FJP-1 is a potential AGEs inhibitor for development of functional foods and treatment various diseases mediated by AGEs and oxidative stress.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"204 ","pages":"Article 115880"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925002170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced glycation end-products (AGEs) generated during protein glycation trigger significant concerns for human health. Exploring safe and effective natural ingredients exhibiting excellent AGEs inhibition has become a promising way to overcome this issue. This research focused on the structural features of Diaphragma Juglandis Fructus polysaccharide (FJP-1) as well as its AGE-inhibiting capacity and mechanisms. The results demonstrated that FJP-1 with a Mw of 22.54 kDa was composed of galactose (Gal), rhamnose (Rha), glucuronic acid (Glc-UA), galacturonic acid (Gal-UA), glucose (Glc) and arabinose (Ara) at a molar ratio of 9.58:3.52:2.72:74.95:1.52:7.71. Its backbone was probably composed of → 4)-Galp-UA-(1→, with branches of → 4,6)-Galp-(1 → and → 4)-Glcp-(1→. And the terminal branches were T-Rhap-(1→), T-Galp-(1→) and T-Araf. In three in vitro models of anti-glycosylation, FJP-1 effectively inhibited the formation of total and special fluorescent AGEs, reduced fructosamine levels, and prevented structural modifications, oxidation, and cross-linking of the protein. Mechanistic and multispectral assays elucidated that the anti-glycative mechanisms of FJP-1 were achieved by capturing methylglyoxal, scavenging free radicals, and binding to bovine serum albumin to form adducts. Pearson’s correlation analyses showed that there were positive correlations between FJP-1′s antioxidant property with the AGEs formation. This study demonstrated that FJP-1 is a potential AGEs inhibitor for development of functional foods and treatment various diseases mediated by AGEs and oxidative stress.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信