Brodie W Bulcock, Yit-Heng Chooi, Gavin R Flematti
{"title":"SpectroIBIS: Automated Data Processing for Multiconformer Quantum Chemical Spectroscopic Calculations.","authors":"Brodie W Bulcock, Yit-Heng Chooi, Gavin R Flematti","doi":"10.1021/acs.jnatprod.4c01321","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum chemical spectroscopic calculations have grown increasingly popular in natural products research for aiding the elucidation of chemical structures, especially their stereochemical configurations. These calculations have become faster with modern computational speeds, but subsequent data handling, inspection, and presentation remain key bottlenecks for many researchers. In this article, we introduce the SpectroIBIS computer program as a user-friendly tool to automate tedious tasks commonly encountered in this workflow. Through a simple graphical user interface, researchers can drag and drop Gaussian or ORCA output files to produce Boltzmann-averaged ECD, VCD, UV-vis and IR data, optical rotations, and/or <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts in seconds. Also produced are formatted, publication-quality supplementary data tables containing conformer energies and atomic coordinates, saved to a DOCX file compatible with Microsoft Word and LibreOffice. Importantly, SpectroIBIS can assist researchers in finding common calculation issues by automatically checking for redundant conformers and imaginary frequencies. Additional useful features include recognition of conformer energy recalculations at a higher theory level, and automated generation of input files for quantum chemistry programs with optional exclusion of high-energy conformers. Lastly, we demonstrate the applicability of SpectroIBIS with spectroscopic calculations for five natural products. SpectroIBIS is open-source software available as a free desktop application (https://github.com/bbulcock/SpectroIBIS).</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum chemical spectroscopic calculations have grown increasingly popular in natural products research for aiding the elucidation of chemical structures, especially their stereochemical configurations. These calculations have become faster with modern computational speeds, but subsequent data handling, inspection, and presentation remain key bottlenecks for many researchers. In this article, we introduce the SpectroIBIS computer program as a user-friendly tool to automate tedious tasks commonly encountered in this workflow. Through a simple graphical user interface, researchers can drag and drop Gaussian or ORCA output files to produce Boltzmann-averaged ECD, VCD, UV-vis and IR data, optical rotations, and/or 1H and 13C NMR chemical shifts in seconds. Also produced are formatted, publication-quality supplementary data tables containing conformer energies and atomic coordinates, saved to a DOCX file compatible with Microsoft Word and LibreOffice. Importantly, SpectroIBIS can assist researchers in finding common calculation issues by automatically checking for redundant conformers and imaginary frequencies. Additional useful features include recognition of conformer energy recalculations at a higher theory level, and automated generation of input files for quantum chemistry programs with optional exclusion of high-energy conformers. Lastly, we demonstrate the applicability of SpectroIBIS with spectroscopic calculations for five natural products. SpectroIBIS is open-source software available as a free desktop application (https://github.com/bbulcock/SpectroIBIS).
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.