Evaluating the oxidative stability of triacylglycerols in rapeseed (Brassica napus) oleosomes

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Lorenz Plankensteiner, Constantinos V. Nikiforidis, Jean-Paul Vincken, Marie Hennebelle
{"title":"Evaluating the oxidative stability of triacylglycerols in rapeseed (Brassica napus) oleosomes","authors":"Lorenz Plankensteiner,&nbsp;Constantinos V. Nikiforidis,&nbsp;Jean-Paul Vincken,&nbsp;Marie Hennebelle","doi":"10.1002/aocs.12902","DOIUrl":null,"url":null,"abstract":"<p>Unsaturated triacylglycerols (TAGs) are stored in natural droplets called oleosomes in seeds. The storage in oleosomes was suggested to increase TAGs' oxidative stability. In this study, we tested the oxidative stability of TAGs in rapeseed oleosomes and compared it with the one of TAGs stored as bulk oils or incorporated into oil-in-water emulsions stabilized by rapeseed lecithin. Oleosome oil-in-water emulsions (Ф<sub>oil</sub> = 0.1) were created and stored along with the bulk oils and lecithin emulsions for 63 days at 40°C. The TAGs in oleosomes were more oxidatively stable than in the bulk oils and lecithin emulsions, as indicated by the 17-day longer lag phase and a 1.6–1.8 times slower maximal hydroperoxide formation compared to the bulk oils and lecithin emulsions. Moreover, we made the first steps towards understanding the high stability of TAGs in oleosomes by monitoring the consumption of oleosome-associated antioxidants (tocopherols and carotenoids). Using oleosome extracts could be a strategy to retard TAGs oxidation in oil-in-water emulsions.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 2","pages":"435-449"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12902","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12902","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Unsaturated triacylglycerols (TAGs) are stored in natural droplets called oleosomes in seeds. The storage in oleosomes was suggested to increase TAGs' oxidative stability. In this study, we tested the oxidative stability of TAGs in rapeseed oleosomes and compared it with the one of TAGs stored as bulk oils or incorporated into oil-in-water emulsions stabilized by rapeseed lecithin. Oleosome oil-in-water emulsions (Фoil = 0.1) were created and stored along with the bulk oils and lecithin emulsions for 63 days at 40°C. The TAGs in oleosomes were more oxidatively stable than in the bulk oils and lecithin emulsions, as indicated by the 17-day longer lag phase and a 1.6–1.8 times slower maximal hydroperoxide formation compared to the bulk oils and lecithin emulsions. Moreover, we made the first steps towards understanding the high stability of TAGs in oleosomes by monitoring the consumption of oleosome-associated antioxidants (tocopherols and carotenoids). Using oleosome extracts could be a strategy to retard TAGs oxidation in oil-in-water emulsions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信