Ankit Gaurav, Xiaoyao Song, Sanjeev Kumar Manhas and Maria Merlyne De Souza
{"title":"Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET†","authors":"Ankit Gaurav, Xiaoyao Song, Sanjeev Kumar Manhas and Maria Merlyne De Souza","doi":"10.1039/D4TC03696D","DOIUrl":null,"url":null,"abstract":"<p >Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 6","pages":" 2804-2813"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d4tc03696d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03696d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors