Self-Assembled Multilayer Single-Walled Carbon Nanotube Thin Film Transistors and Doping Regulation

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiangxiang Gao;Zhenhua Lin;Jincheng Zhang;Yue Hao;Jingjing Chang
{"title":"Self-Assembled Multilayer Single-Walled Carbon Nanotube Thin Film Transistors and Doping Regulation","authors":"Xiangxiang Gao;Zhenhua Lin;Jincheng Zhang;Yue Hao;Jingjing Chang","doi":"10.1109/JEDS.2025.3532593","DOIUrl":null,"url":null,"abstract":"Semiconducting single-walled carbon nanotubes (SWCNTs) have stimulated tremendous research interest in high performance electronics thanks to their impressive mechanical and electronic properties. However, it is still challenging to prepare wafer-scale SWCNTs thin films and fine-tunable device performance. Here, layer-by-layer (LbL) assembly is presented as an effective approach to prepare multilayer SWCNT thin films by coordinating poly(diallyldimethylammonium chloride) (PDDA) with SWCNTs. The thickness of SWCNTs thin film is linearly dependent on the bilayer numbers. Thin film transistors (TFTs) fabricated from SWCNTs thin films showed prominent device performance with a mobility of <inline-formula> <tex-math>$\\rm 15.3 cm_{2} \\cdot V_{1}\\cdot s_{1}$ </tex-math></inline-formula>. Further the molecular dopants bis (trifluoromethane) sulfonimide (TFSI), with strong electro-withdrawing capability and protonating nature, was utilized to functionalize SWCNTs thin films, thereby regulating their electronic performances. The TFSI surface functionalization can remove excess electrons from SWCNT thin films, resulting in improved on-state current, increased carrier mobility and positively shifted threshold voltage. The molecular doping holds great promise for the future realization of large-area, low-power logic circuits and high-performance electronics.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"93-97"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849582","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10849582/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconducting single-walled carbon nanotubes (SWCNTs) have stimulated tremendous research interest in high performance electronics thanks to their impressive mechanical and electronic properties. However, it is still challenging to prepare wafer-scale SWCNTs thin films and fine-tunable device performance. Here, layer-by-layer (LbL) assembly is presented as an effective approach to prepare multilayer SWCNT thin films by coordinating poly(diallyldimethylammonium chloride) (PDDA) with SWCNTs. The thickness of SWCNTs thin film is linearly dependent on the bilayer numbers. Thin film transistors (TFTs) fabricated from SWCNTs thin films showed prominent device performance with a mobility of $\rm 15.3 cm_{2} \cdot V_{1}\cdot s_{1}$ . Further the molecular dopants bis (trifluoromethane) sulfonimide (TFSI), with strong electro-withdrawing capability and protonating nature, was utilized to functionalize SWCNTs thin films, thereby regulating their electronic performances. The TFSI surface functionalization can remove excess electrons from SWCNT thin films, resulting in improved on-state current, increased carrier mobility and positively shifted threshold voltage. The molecular doping holds great promise for the future realization of large-area, low-power logic circuits and high-performance electronics.
自组装多层单壁碳纳米管薄膜晶体管及掺杂调控
半导体单壁碳纳米管(SWCNTs)由于其优异的机械和电子性能,在高性能电子学领域引起了巨大的研究兴趣。然而,制备晶圆级SWCNTs薄膜和可调器件性能仍然具有挑战性。在这里,层接层(LbL)组装被认为是一种通过配位聚二烯基二甲基氯化铵(PDDA)和SWCNTs来制备多层SWCNTs薄膜的有效方法。SWCNTs薄膜的厚度与双分子层数呈线性关系。由SWCNTs薄膜制备的薄膜晶体管(TFTs)具有优异的器件性能,迁移率为$\rm 15.3 cm_{2} \cdot V_{1}\cdot s_{1}$。此外,利用具有强吸电能力和质子化性质的分子掺杂剂双(三氟甲烷)磺酰亚胺(TFSI)对SWCNTs薄膜进行功能化,从而调节其电子性能。TFSI表面功能化可以去除swcnts薄膜上多余的电子,从而改善导通电流,增加载流子迁移率和正位移阈值电压。分子掺杂在未来实现大面积、低功耗逻辑电路和高性能电子器件方面具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信