Natural gas pipeline weak leakage detection based on negative pressure wave decomposition and feature enhancement

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Lin Ye , Chengyou Wang , Xiao Zhou , Baocheng Jiang , Changsong Yu , Zhiliang Qin
{"title":"Natural gas pipeline weak leakage detection based on negative pressure wave decomposition and feature enhancement","authors":"Lin Ye ,&nbsp;Chengyou Wang ,&nbsp;Xiao Zhou ,&nbsp;Baocheng Jiang ,&nbsp;Changsong Yu ,&nbsp;Zhiliang Qin","doi":"10.1016/j.ress.2025.110857","DOIUrl":null,"url":null,"abstract":"<div><div>Natural gas pipeline leakage detection (PLD) based on negative pressure wave (NPW) signals faces significant challenges, including external noise that obscures crucial information and inadequate feature extraction, which often result in low detection accuracy. To address these issues, a weak leakage detection model for natural gas pipelines, named MDDet, is proposed, which integrates variational mode decomposition (VMD)-based signal decomposition and feature enhancement. The MDDet consists of two main components. The first component is the mutual difference distance (MDD) algorithm, which processes NPW signals by integrating signal decomposition for denoising and selecting the optimal intrinsic mode function <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span> related to leakage information. The second component is the dual-stream enhanced feature (DEF) algorithm that uses data cropping and dimensionality enhancement to enhance feature for weak leakage detection. Field tests were conducted on natural gas supply systems in two cities to validate the model, with further evaluation of its efficiency in realistic urban pipeline environments in China. The results demonstrate that the MDD algorithm accurately extracts effective leakage information and the DEF algorithm effectively classifies multi-channel feature sample, reflecting the working conditions of the monitored pipelines.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"257 ","pages":"Article 110857"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025000602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural gas pipeline leakage detection (PLD) based on negative pressure wave (NPW) signals faces significant challenges, including external noise that obscures crucial information and inadequate feature extraction, which often result in low detection accuracy. To address these issues, a weak leakage detection model for natural gas pipelines, named MDDet, is proposed, which integrates variational mode decomposition (VMD)-based signal decomposition and feature enhancement. The MDDet consists of two main components. The first component is the mutual difference distance (MDD) algorithm, which processes NPW signals by integrating signal decomposition for denoising and selecting the optimal intrinsic mode function Io related to leakage information. The second component is the dual-stream enhanced feature (DEF) algorithm that uses data cropping and dimensionality enhancement to enhance feature for weak leakage detection. Field tests were conducted on natural gas supply systems in two cities to validate the model, with further evaluation of its efficiency in realistic urban pipeline environments in China. The results demonstrate that the MDD algorithm accurately extracts effective leakage information and the DEF algorithm effectively classifies multi-channel feature sample, reflecting the working conditions of the monitored pipelines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信