A novel soil reaction model for continuous impact pile driving

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shihong Zhang , Lizhong Wang , Mengtao Xu , Shengjie Rui , Zhen Guo
{"title":"A novel soil reaction model for continuous impact pile driving","authors":"Shihong Zhang ,&nbsp;Lizhong Wang ,&nbsp;Mengtao Xu ,&nbsp;Shengjie Rui ,&nbsp;Zhen Guo","doi":"10.1016/j.compgeo.2025.107123","DOIUrl":null,"url":null,"abstract":"<div><div>Impact pile driving is widely employed in various environments. The soil surrounding driven piles undergoes large shear displacements and highly cyclic loads, leading to significant strength degradation. This paper introduces a novel soil reaction model with easily calibrated parameters to estimate the pile penetration performance under continuous impact driving, incorporating both cyclic degradation and base gap. Soil cumulative plastic displacement is utilized to quantity the degradation, enabling more accurate simulation of cyclic pile response. The model is integrated into the pile driving system and applied in multiple-blow analysis. Non-linear cumulative displacement-blow count curves are analyzed and the development of residual stress varies between the pile upper and lower sections. It is found that lower blow counts are required when cyclic degradation is considered, although the increased rebound effect may counterbalance this benefit. Comparative analyses for degradation constants further demonstrate that early-stage degradation has a more pronounced impact. Finally, the proposed model is also adopted to predict blow count in field practice, offering valuable insights for driveability analysis.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107123"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000722","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Impact pile driving is widely employed in various environments. The soil surrounding driven piles undergoes large shear displacements and highly cyclic loads, leading to significant strength degradation. This paper introduces a novel soil reaction model with easily calibrated parameters to estimate the pile penetration performance under continuous impact driving, incorporating both cyclic degradation and base gap. Soil cumulative plastic displacement is utilized to quantity the degradation, enabling more accurate simulation of cyclic pile response. The model is integrated into the pile driving system and applied in multiple-blow analysis. Non-linear cumulative displacement-blow count curves are analyzed and the development of residual stress varies between the pile upper and lower sections. It is found that lower blow counts are required when cyclic degradation is considered, although the increased rebound effect may counterbalance this benefit. Comparative analyses for degradation constants further demonstrate that early-stage degradation has a more pronounced impact. Finally, the proposed model is also adopted to predict blow count in field practice, offering valuable insights for driveability analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信