Optimal allocation of defensive resources in regional railway networks under intentional attacks

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Benwei Hou , Pengxu Chen , Xudong Zhao , Zhilong Chen
{"title":"Optimal allocation of defensive resources in regional railway networks under intentional attacks","authors":"Benwei Hou ,&nbsp;Pengxu Chen ,&nbsp;Xudong Zhao ,&nbsp;Zhilong Chen","doi":"10.1016/j.ress.2025.110864","DOIUrl":null,"url":null,"abstract":"<div><div>Railway network is one of the busiest regional transportation infrastructures, which is exposed to a high risk of intentional attacks. Given the railway network stations have a larger service area, attackers may have different biases toward the valuation of railway stations or lines. This paper proposes a method for optimally allocating defensive resources based on a Bayesian game model and a comprehensive importance evaluation model of stations by multi-layer network models, aiming to reduce the losses of defenders. The attack strategy was made according to the importance of railway stations evaluated by three-layer network models, namely topology layer, the ridership layer and the travel time layer, which depict the features of railway networks and also reflect the variety of attacker's biases. The optimal allocation of defensive resources was obtained under the Nash equilibrium of Bayesian game. The proposed method is implemented in a regional railway network in north China, and the case network's risk under various attack strategies were compared to validate the applicability of this model. The application results show that the optimal defensive resources allocation based on the importance evaluation by three-layer models has the lowest risk considering the variety in the attacker's biases.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"257 ","pages":"Article 110864"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025000675","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Railway network is one of the busiest regional transportation infrastructures, which is exposed to a high risk of intentional attacks. Given the railway network stations have a larger service area, attackers may have different biases toward the valuation of railway stations or lines. This paper proposes a method for optimally allocating defensive resources based on a Bayesian game model and a comprehensive importance evaluation model of stations by multi-layer network models, aiming to reduce the losses of defenders. The attack strategy was made according to the importance of railway stations evaluated by three-layer network models, namely topology layer, the ridership layer and the travel time layer, which depict the features of railway networks and also reflect the variety of attacker's biases. The optimal allocation of defensive resources was obtained under the Nash equilibrium of Bayesian game. The proposed method is implemented in a regional railway network in north China, and the case network's risk under various attack strategies were compared to validate the applicability of this model. The application results show that the optimal defensive resources allocation based on the importance evaluation by three-layer models has the lowest risk considering the variety in the attacker's biases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信