{"title":"Spectral extremal graphs for disjoint odd wheels","authors":"Yu Luo , Zhenyu Ni , Yanxia Dong","doi":"10.1016/j.laa.2025.01.034","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <em>F</em>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>F</em>-free graphs of order <em>n</em>, respectively. <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> consist of the extremal graphs associated with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, respectively. The odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is constructed by joining a vertex to a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span>. Cioabă, Desai and Tait determined the spectral extremal graphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Xiao and Zamora determined the Turán number and all extremal graphs for <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, which is the union of <em>t</em> vertex-disjoint copies of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We present structural characteristics of these spectral extremal graphs for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Furthermore, we demonstrate that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>10</mn></math></span> and <em>n</em> large enough.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 243-266"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000400","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a given graph F, let and be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all F-free graphs of order n, respectively. and consist of the extremal graphs associated with and , respectively. The odd wheel is constructed by joining a vertex to a cycle . Cioabă, Desai and Tait determined the spectral extremal graphs of for . Xiao and Zamora determined the Turán number and all extremal graphs for , which is the union of t vertex-disjoint copies of for . In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to . We present structural characteristics of these spectral extremal graphs for . Furthermore, we demonstrate that for and n large enough.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.