Weiwei Niu , Yuan-Yuan Zheng , Zhen-Yu Yin , Chi Yao , Pengchang Wei
{"title":"Multiscale mechanical behavior of hydrated expansive soil: Insights from experimental and MD study","authors":"Weiwei Niu , Yuan-Yuan Zheng , Zhen-Yu Yin , Chi Yao , Pengchang Wei","doi":"10.1016/j.compgeo.2025.107129","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behavior of expansive soil in geotechnical engineering is significantly sensitive to loading rates, hydration, confining pressure, etc., where most engineering problems are attributed to the existence of montmorillonite in expansive soil. Here, the hydration, confining pressure, and loading rate effect on the mechanical behavior of montmorillonite were investigated through the triaxial tests and molecular dynamics (MD) simulation method, revealing their fundamental mechanism between the microscale and macroscale. The average basal spacing of hydrated montmorillonite system, the diffusion coefficient and density distribution of interlayer water molecules were calculated for the verification of MD model. The experimental results indicated that the stress–strain relationship of montmorillonite was the strain-hardening type. The failure stress did not increase monotonously with the increase in loading rate, and there were two obvious critical points. The failure stress of the soil sample increased with the increase of the confining pressure, and the decrease of the water content, where their fundamental mechanism between microscale and macroscale were adequately discussed. Furthermore, the stress–strain response, total energy evolution, deformation evolution of atomistic structure, and broken bonds evolution were analyzed to deeply understand the fundamental deformation mechanism at the microscale. The multi-scale studies could effectively examine the macroscopic mechanical behavior of expansive soil and elucidate its microscopic mechanisms.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107129"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000783","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behavior of expansive soil in geotechnical engineering is significantly sensitive to loading rates, hydration, confining pressure, etc., where most engineering problems are attributed to the existence of montmorillonite in expansive soil. Here, the hydration, confining pressure, and loading rate effect on the mechanical behavior of montmorillonite were investigated through the triaxial tests and molecular dynamics (MD) simulation method, revealing their fundamental mechanism between the microscale and macroscale. The average basal spacing of hydrated montmorillonite system, the diffusion coefficient and density distribution of interlayer water molecules were calculated for the verification of MD model. The experimental results indicated that the stress–strain relationship of montmorillonite was the strain-hardening type. The failure stress did not increase monotonously with the increase in loading rate, and there were two obvious critical points. The failure stress of the soil sample increased with the increase of the confining pressure, and the decrease of the water content, where their fundamental mechanism between microscale and macroscale were adequately discussed. Furthermore, the stress–strain response, total energy evolution, deformation evolution of atomistic structure, and broken bonds evolution were analyzed to deeply understand the fundamental deformation mechanism at the microscale. The multi-scale studies could effectively examine the macroscopic mechanical behavior of expansive soil and elucidate its microscopic mechanisms.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.