Multiscale mechanical behavior of hydrated expansive soil: Insights from experimental and MD study

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Weiwei Niu , Yuan-Yuan Zheng , Zhen-Yu Yin , Chi Yao , Pengchang Wei
{"title":"Multiscale mechanical behavior of hydrated expansive soil: Insights from experimental and MD study","authors":"Weiwei Niu ,&nbsp;Yuan-Yuan Zheng ,&nbsp;Zhen-Yu Yin ,&nbsp;Chi Yao ,&nbsp;Pengchang Wei","doi":"10.1016/j.compgeo.2025.107129","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behavior of expansive soil in geotechnical engineering is significantly sensitive to loading rates, hydration, confining pressure, etc., where most engineering problems are attributed to the existence of montmorillonite in expansive soil. Here, the hydration, confining pressure, and loading rate effect on the mechanical behavior of montmorillonite were investigated through the triaxial tests and molecular dynamics (MD) simulation method, revealing their fundamental mechanism between the microscale and macroscale. The average basal spacing of hydrated montmorillonite system, the diffusion coefficient and density distribution of interlayer water molecules were calculated for the verification of MD model. The experimental results indicated that the stress–strain relationship of montmorillonite was the strain-hardening type. The failure stress did not increase monotonously with the increase in loading rate, and there were two obvious critical points. The failure stress of the soil sample increased with the increase of the confining pressure, and the decrease of the water content, where their fundamental mechanism between microscale and macroscale were adequately discussed. Furthermore, the stress–strain response, total energy evolution, deformation evolution of atomistic structure, and broken bonds evolution were analyzed to deeply understand the fundamental deformation mechanism at the microscale. The multi-scale studies could effectively examine the macroscopic mechanical behavior of expansive soil and elucidate its microscopic mechanisms.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107129"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000783","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical behavior of expansive soil in geotechnical engineering is significantly sensitive to loading rates, hydration, confining pressure, etc., where most engineering problems are attributed to the existence of montmorillonite in expansive soil. Here, the hydration, confining pressure, and loading rate effect on the mechanical behavior of montmorillonite were investigated through the triaxial tests and molecular dynamics (MD) simulation method, revealing their fundamental mechanism between the microscale and macroscale. The average basal spacing of hydrated montmorillonite system, the diffusion coefficient and density distribution of interlayer water molecules were calculated for the verification of MD model. The experimental results indicated that the stress–strain relationship of montmorillonite was the strain-hardening type. The failure stress did not increase monotonously with the increase in loading rate, and there were two obvious critical points. The failure stress of the soil sample increased with the increase of the confining pressure, and the decrease of the water content, where their fundamental mechanism between microscale and macroscale were adequately discussed. Furthermore, the stress–strain response, total energy evolution, deformation evolution of atomistic structure, and broken bonds evolution were analyzed to deeply understand the fundamental deformation mechanism at the microscale. The multi-scale studies could effectively examine the macroscopic mechanical behavior of expansive soil and elucidate its microscopic mechanisms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信