Yuxuan He , Enrico Zio , Zhaoming Yang , Qi Xiang , Lin Fan , Qian He , Shiliang Peng , Zongjie Zhang , Huai Su , Jinjun Zhang
{"title":"A systematic resilience assessment framework for multi-state systems based on physics-informed neural network","authors":"Yuxuan He , Enrico Zio , Zhaoming Yang , Qi Xiang , Lin Fan , Qian He , Shiliang Peng , Zongjie Zhang , Huai Su , Jinjun Zhang","doi":"10.1016/j.ress.2025.110866","DOIUrl":null,"url":null,"abstract":"<div><div>Resilience is crucial for systems to maintain functionality under disturbances, especially in critical applications. However, current methods for assessing resilience in multi-state systems (MSS), particularly those modeled with Markov Repairable Processes (MRP), often face high computational costs and inefficiencies in handling complex dynamics. To address these issues, this paper proposes a systematic framework for resilience assessment of MSS whose recovery process is described as a MRP, integrated with enhanced Physics-Informed Neural Networks (PINN). In the first step of the framework, the computation of resilience indices is performed, based on the MRP of the MSS and considering the system evolution through vulnerable and recovery phases. In the second step of the framework, the enhanced PINN is integrated into the MRP solution. A typical standby MSS structure is analyzed based on the proposed framework. By gradient calibration and momentum-driving training, the computational cost is shown to be reduced by 92.4 %, compared to the eigenvector method of solution. The approach is adaptable to other safety-critical systems, offering a robust tool for more effective resilience evaluation and system optimization.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"257 ","pages":"Article 110866"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025000699","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Resilience is crucial for systems to maintain functionality under disturbances, especially in critical applications. However, current methods for assessing resilience in multi-state systems (MSS), particularly those modeled with Markov Repairable Processes (MRP), often face high computational costs and inefficiencies in handling complex dynamics. To address these issues, this paper proposes a systematic framework for resilience assessment of MSS whose recovery process is described as a MRP, integrated with enhanced Physics-Informed Neural Networks (PINN). In the first step of the framework, the computation of resilience indices is performed, based on the MRP of the MSS and considering the system evolution through vulnerable and recovery phases. In the second step of the framework, the enhanced PINN is integrated into the MRP solution. A typical standby MSS structure is analyzed based on the proposed framework. By gradient calibration and momentum-driving training, the computational cost is shown to be reduced by 92.4 %, compared to the eigenvector method of solution. The approach is adaptable to other safety-critical systems, offering a robust tool for more effective resilience evaluation and system optimization.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.