An experimental study on thermal performance Characteristics of a hut enhanced by phase change material in Shanghai

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zhuqing Luo, Hongtao Xu
{"title":"An experimental study on thermal performance Characteristics of a hut enhanced by phase change material in Shanghai","authors":"Zhuqing Luo,&nbsp;Hongtao Xu","doi":"10.1016/j.enbuild.2025.115418","DOIUrl":null,"url":null,"abstract":"<div><div>The application of phase change materials in building envelopes has shown great potential to reduce energy consumption. However, current research is typically limited to short-term experimental data (1–3 day s) or data obtained from a small number of measurement points, and lack monitoring of the thermal behavior of phase change materials, which are insufficient to provide a reliable basis for practical applications. This study addresses this gap by constructing two outdoor huts in Shanghai. Both huts equipped with fan heaters controlled by temperature controller to maintain appropriate indoor temperature. One of the huts integrated phase change material into the hollow polycarbonate sheets and porous bricks for the roof and walls, respectively. Over 15 days in April, an in-depth analysis was conducted on the long-term thermal response of the phase change material, roof, and walls, the operational details, and electricity consumption of two fan heaters in both huts to assess the impact of phase change material on thermal performance and building operational energy consumption. Results indicate that applying phase change material significantly improved thermal stability of walls, reducing the average daily amplitude of temperature fluctuations within walls from 6.9–7.3 °C to 5.4–6.0 °C. The phase change material at different positions showed positive effects over a long period, with the roof application delaying the occurrence of peak temperature in the hollow polycarbonate sheet holes by an average of 62 min daily. The paraffin wax on the north wall exhibited optimal performance, maintaining effective thermal regulation for 18.4–24 h before April 14th. Additionally, the integration of phase change material-enhanced energy efficiency, resulting in a 27.8 % reduction in electricity consumption. This study investigated the energy storage behavior of phase change material in various building locations under the combined effects of the outdoor environment and fan heater over 15 days, contributing to enhanced energy performance of building during transitional seasons.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"331 ","pages":"Article 115418"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The application of phase change materials in building envelopes has shown great potential to reduce energy consumption. However, current research is typically limited to short-term experimental data (1–3 day s) or data obtained from a small number of measurement points, and lack monitoring of the thermal behavior of phase change materials, which are insufficient to provide a reliable basis for practical applications. This study addresses this gap by constructing two outdoor huts in Shanghai. Both huts equipped with fan heaters controlled by temperature controller to maintain appropriate indoor temperature. One of the huts integrated phase change material into the hollow polycarbonate sheets and porous bricks for the roof and walls, respectively. Over 15 days in April, an in-depth analysis was conducted on the long-term thermal response of the phase change material, roof, and walls, the operational details, and electricity consumption of two fan heaters in both huts to assess the impact of phase change material on thermal performance and building operational energy consumption. Results indicate that applying phase change material significantly improved thermal stability of walls, reducing the average daily amplitude of temperature fluctuations within walls from 6.9–7.3 °C to 5.4–6.0 °C. The phase change material at different positions showed positive effects over a long period, with the roof application delaying the occurrence of peak temperature in the hollow polycarbonate sheet holes by an average of 62 min daily. The paraffin wax on the north wall exhibited optimal performance, maintaining effective thermal regulation for 18.4–24 h before April 14th. Additionally, the integration of phase change material-enhanced energy efficiency, resulting in a 27.8 % reduction in electricity consumption. This study investigated the energy storage behavior of phase change material in various building locations under the combined effects of the outdoor environment and fan heater over 15 days, contributing to enhanced energy performance of building during transitional seasons.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信