Pengyuan Ren , Yu Ouyang , Jierui Mu , Sheng Luo , Zijue Tang , Yi Wu , Chu Lun Alex Leung , J.P. Oliveira , Yu Zou , Haowei Wang , Hongze Wang
{"title":"Metal powder atomization preparation, modification, and reuse for additive manufacturing: A review","authors":"Pengyuan Ren , Yu Ouyang , Jierui Mu , Sheng Luo , Zijue Tang , Yi Wu , Chu Lun Alex Leung , J.P. Oliveira , Yu Zou , Haowei Wang , Hongze Wang","doi":"10.1016/j.pmatsci.2025.101449","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) processes are pivotal in various manufacturing industries due to their efficiency and ability to produce parts with complex structures and shapes. Metal powders, essential as feedstock for AM, especially in direct energy deposition (DED) and powder bed fusion (PBF) processes, have garnered significant attention from academia and industry. However, a comprehensive review focusing on the entire lifecycle of powders for AM is currently lacking. This review provides an exhaustive overview of powders used in AM, covering powder preparation methods, modification, and reuse. We critically discuss and compare various powder preparation techniques and review their properties, characterization methods, and impacts on AM processes. Here, we also summarize powder modification methods and improvements in powder properties and AM-produced parts. Finally, we address the reuse of powders in AM fabrication, including strategies, effects, and assessments of reusability post-manufacturing, which are crucial for reducing AM-associated costs. This work offers a state-of-the-art perspective in preparation, modification, and reuse of metal powders in AM.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"152 ","pages":"Article 101449"},"PeriodicalIF":33.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000246","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) processes are pivotal in various manufacturing industries due to their efficiency and ability to produce parts with complex structures and shapes. Metal powders, essential as feedstock for AM, especially in direct energy deposition (DED) and powder bed fusion (PBF) processes, have garnered significant attention from academia and industry. However, a comprehensive review focusing on the entire lifecycle of powders for AM is currently lacking. This review provides an exhaustive overview of powders used in AM, covering powder preparation methods, modification, and reuse. We critically discuss and compare various powder preparation techniques and review their properties, characterization methods, and impacts on AM processes. Here, we also summarize powder modification methods and improvements in powder properties and AM-produced parts. Finally, we address the reuse of powders in AM fabrication, including strategies, effects, and assessments of reusability post-manufacturing, which are crucial for reducing AM-associated costs. This work offers a state-of-the-art perspective in preparation, modification, and reuse of metal powders in AM.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.