Thea Denell, Lauri Himanen, Markus Scheidgen, Claudia Draxl
{"title":"Automated identification of bulk structures, two-dimensional materials, and interfaces using symmetry-based clustering","authors":"Thea Denell, Lauri Himanen, Markus Scheidgen, Claudia Draxl","doi":"10.1038/s41524-024-01498-x","DOIUrl":null,"url":null,"abstract":"<p>With the rapidly increasing amount of materials data being generated in a variety of projects, efficient and accurate classification of atomistic structures is essential. A current barrier to effective database queries lies in the often ambiguous, inconsistent, or completely missing classification of existing data, highlighting the need for standardized, automated, and verifiable classification methods. This work proposes a robust solution for identifying and classifying a wide spectrum of materials through an iterative technique, called symmetry-based clustering (SBC). Because SBC is not a machine learning-based method, it requires no prior training. Instead, it identifies clusters in atomistic systems by automatically recognizing common unit cells. We demonstrate the potential of SBC to provide automated, reliable classification and to reveal well-known symmetry properties of various materials. Even noisy systems are shown to be classifiable, showing the suitability of our algorithm for real-world data applications. The software implementation is provided in the open-source Python package, MatID, exploiting synergies with popular atomic-structure manipulation libraries and extending the accessibility of those libraries through the NOMAD platform.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"28 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01498-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapidly increasing amount of materials data being generated in a variety of projects, efficient and accurate classification of atomistic structures is essential. A current barrier to effective database queries lies in the often ambiguous, inconsistent, or completely missing classification of existing data, highlighting the need for standardized, automated, and verifiable classification methods. This work proposes a robust solution for identifying and classifying a wide spectrum of materials through an iterative technique, called symmetry-based clustering (SBC). Because SBC is not a machine learning-based method, it requires no prior training. Instead, it identifies clusters in atomistic systems by automatically recognizing common unit cells. We demonstrate the potential of SBC to provide automated, reliable classification and to reveal well-known symmetry properties of various materials. Even noisy systems are shown to be classifiable, showing the suitability of our algorithm for real-world data applications. The software implementation is provided in the open-source Python package, MatID, exploiting synergies with popular atomic-structure manipulation libraries and extending the accessibility of those libraries through the NOMAD platform.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.