Yanpei Hou, Sipei Chen, Yi Li, Liming Huang, Huijian Zhang, Min Yu, Lin Xiong, Xiang Zhong, Li Wang, Xianjun Zhu, Guisen Li, Lei Peng
{"title":"Integration of metabolomics and transcriptomics reveals the mechanism of TMEM30A downregulation induced FSGS podocyte injury.","authors":"Yanpei Hou, Sipei Chen, Yi Li, Liming Huang, Huijian Zhang, Min Yu, Lin Xiong, Xiang Zhong, Li Wang, Xianjun Zhu, Guisen Li, Lei Peng","doi":"10.1152/ajprenal.00201.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Podocyte injury plays a critical role in the pathogenesis and progression of focal and segmental glomerulosclerosis (FSGS). Transmembrane protein 30 A (TMEM30A) downregulation participates in podocyte injury. This study aimed to identify the critical pathways and molecules associated with the downregulation of TMEM30A in the context of FSGS podocyte injury. In our study, we found that TMEM30A and podocyte marker Synaptopodin were significantly downregulated in kidney tissues from patients with FSGS compared with those in normal controls. Using transcriptomic and metabolomic analyses, we characterized <i>Tmem30a</i> knockdown (KD) and normal mouse podocytes to identify differentially expressed genes and metabolites. Then, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Protein-Protein Interaction (PPI) network were constructed, and the differentially expressed genes and metabolites were enriched into glycolytic pathway. Furthermore, we found that the key glycolytic enzymes were downregulated in patients with FSGS, podocyte-specific <i>Tmem30a<sup>LoxP/LoxP</sup></i>; <i>NPHS2-Cre</i> mice, and <i>Tmem30a</i> KD mouse podocytes. For rescue experiments, shTmem30a-resistant cDNA (resTmem30a) was created to intervene <i>Tmem30a</i> KD mouse podocytes. And we observed that podocyte-related molecules were downregulated in the <i>Tmem30a</i> KD group, along with glycolysis-related molecules, but the resTmem30a partially reversed this trend. Our findings clarified that TMEM30A downregulation initiates podocyte injury by reducing glycolysis-related molecules (ALDOA, HK2, LDHA, and GAPDH) in FSGS and has implications for early diagnosis, prevention, and treatment.<b>NEW & NOTEWORTHY</b> This study aimed to identify the key pathways and molecules of TMEM30A downregulation involved in FSGS podocyte injury. Through comprehensive transcriptomic and metabolomic analyses, as well as in vivo and in vitro experiments, we discovered that the downregulation of TMEM30A triggers podocyte injury by decreasing the levels of glycolysis-related molecules, including ALDOA, HK2, LDHA, and GAPDH, in FSGS.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F389-F405"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00201.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Podocyte injury plays a critical role in the pathogenesis and progression of focal and segmental glomerulosclerosis (FSGS). Transmembrane protein 30 A (TMEM30A) downregulation participates in podocyte injury. This study aimed to identify the critical pathways and molecules associated with the downregulation of TMEM30A in the context of FSGS podocyte injury. In our study, we found that TMEM30A and podocyte marker Synaptopodin were significantly downregulated in kidney tissues from patients with FSGS compared with those in normal controls. Using transcriptomic and metabolomic analyses, we characterized Tmem30a knockdown (KD) and normal mouse podocytes to identify differentially expressed genes and metabolites. Then, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Protein-Protein Interaction (PPI) network were constructed, and the differentially expressed genes and metabolites were enriched into glycolytic pathway. Furthermore, we found that the key glycolytic enzymes were downregulated in patients with FSGS, podocyte-specific Tmem30aLoxP/LoxP; NPHS2-Cre mice, and Tmem30a KD mouse podocytes. For rescue experiments, shTmem30a-resistant cDNA (resTmem30a) was created to intervene Tmem30a KD mouse podocytes. And we observed that podocyte-related molecules were downregulated in the Tmem30a KD group, along with glycolysis-related molecules, but the resTmem30a partially reversed this trend. Our findings clarified that TMEM30A downregulation initiates podocyte injury by reducing glycolysis-related molecules (ALDOA, HK2, LDHA, and GAPDH) in FSGS and has implications for early diagnosis, prevention, and treatment.NEW & NOTEWORTHY This study aimed to identify the key pathways and molecules of TMEM30A downregulation involved in FSGS podocyte injury. Through comprehensive transcriptomic and metabolomic analyses, as well as in vivo and in vitro experiments, we discovered that the downregulation of TMEM30A triggers podocyte injury by decreasing the levels of glycolysis-related molecules, including ALDOA, HK2, LDHA, and GAPDH, in FSGS.