Xenia Pascari, Irene Teixido-Orries, Francisco Molino, Sonia Marin, Antonio J Ramos
{"title":"Assessing the <i>in vitro</i> efficiency in adsorbing mycotoxins of a tri-octahedral bentonite with potential application in aquaculture feed.","authors":"Xenia Pascari, Irene Teixido-Orries, Francisco Molino, Sonia Marin, Antonio J Ramos","doi":"10.1080/19440049.2025.2459234","DOIUrl":null,"url":null,"abstract":"<p><p>The use of mycotoxin binders in feed products is currently the most efficient method to mitigate the harmful effects of mycotoxins. The unprecedented growth of aquaculture in recent years has led to an increased use of plant-based ingredients in fish feeds, thereby raising the risk of mycotoxin exposure. This study investigates the <i>in vitro</i> adsorption efficiency of a tri-octahedral bentonite against aflatoxin B<sub>1</sub> (AFB1), zearalenone (ZEN), and fumonisin B<sub>1</sub> (FB1) in simulated gastric (pH = 1.2) and intestinal (pH = 6.8) fluids at 25 °C, the usual body temperature in aquaculture fish species. The binder was highly effective, removing over 98% of AFB1 from both media. FB1 was completely adsorbed at pH = 1.2, while its adsorption at pH = 6.8 reached a maximum of 46.3%. ZEN binding was consistent across both pH levels, ranging from 56.1% to 69.7%. Nine equilibrium isotherm functions were fitted to the experimental data to elucidate the adsorption mechanisms. A Sips model isotherm best characterized AFB1 adsorption in simulated gastric fluid, whereas that of ZEN was best described by the Freundlich model. In simulated intestinal fluid (pH = 6.8), monolayer adsorption described by the Langmuir model provided the best fit for all three mycotoxins.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"1-14"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2025.2459234","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The use of mycotoxin binders in feed products is currently the most efficient method to mitigate the harmful effects of mycotoxins. The unprecedented growth of aquaculture in recent years has led to an increased use of plant-based ingredients in fish feeds, thereby raising the risk of mycotoxin exposure. This study investigates the in vitro adsorption efficiency of a tri-octahedral bentonite against aflatoxin B1 (AFB1), zearalenone (ZEN), and fumonisin B1 (FB1) in simulated gastric (pH = 1.2) and intestinal (pH = 6.8) fluids at 25 °C, the usual body temperature in aquaculture fish species. The binder was highly effective, removing over 98% of AFB1 from both media. FB1 was completely adsorbed at pH = 1.2, while its adsorption at pH = 6.8 reached a maximum of 46.3%. ZEN binding was consistent across both pH levels, ranging from 56.1% to 69.7%. Nine equilibrium isotherm functions were fitted to the experimental data to elucidate the adsorption mechanisms. A Sips model isotherm best characterized AFB1 adsorption in simulated gastric fluid, whereas that of ZEN was best described by the Freundlich model. In simulated intestinal fluid (pH = 6.8), monolayer adsorption described by the Langmuir model provided the best fit for all three mycotoxins.
期刊介绍:
Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.