Predicting the impact of public events and mobility in Smart Cities

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Elena Bellodi, Riccardo Zese, Carlo Petrovich, Angelo Frascella, Francesco Bertasi
{"title":"Predicting the impact of public events and mobility in Smart Cities","authors":"Elena Bellodi,&nbsp;Riccardo Zese,&nbsp;Carlo Petrovich,&nbsp;Angelo Frascella,&nbsp;Francesco Bertasi","doi":"10.1049/smc2.12087","DOIUrl":null,"url":null,"abstract":"<p>The ubiquitous presence of smartphones and the ever-expanding Internet of Things are generating a treasure trove of data on human movement. We harness the power of Artificial Intelligence to extract knowledge within this data, in particular for predicting people flows and density in a Smart City. This predictive ability holds immense potential for a multitude of applications, from optimising people flow to streamlining event planning, while offering a powerful tool for pre-emptive identification of situations that may lead to crowd disasters. In this paper, we tackle two crucial aspects of people mobility using data from public events and an Italian mobile phone network: to predict both event attendance and future crowd density in specific areas. The event details (location, time etc.) are automatically gathered and stored in a structured format. Next, we handle these problems are treated in a “supervised learning” setting, and various state-of-art Machine Learning techniques are tested to find the best model for each task. The obtained models will be encapsulated into a Policy Support System contributing to foster planning actions of mobility services.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":"6 4","pages":"253-275"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12087","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquitous presence of smartphones and the ever-expanding Internet of Things are generating a treasure trove of data on human movement. We harness the power of Artificial Intelligence to extract knowledge within this data, in particular for predicting people flows and density in a Smart City. This predictive ability holds immense potential for a multitude of applications, from optimising people flow to streamlining event planning, while offering a powerful tool for pre-emptive identification of situations that may lead to crowd disasters. In this paper, we tackle two crucial aspects of people mobility using data from public events and an Italian mobile phone network: to predict both event attendance and future crowd density in specific areas. The event details (location, time etc.) are automatically gathered and stored in a structured format. Next, we handle these problems are treated in a “supervised learning” setting, and various state-of-art Machine Learning techniques are tested to find the best model for each task. The obtained models will be encapsulated into a Policy Support System contributing to foster planning actions of mobility services.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信