Traffic microsimulation for smart cities: Investigating the impact of objective function formulation on calibration efficiency

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ismail M. A. Abuamer, Chris M. J. Tampère
{"title":"Traffic microsimulation for smart cities: Investigating the impact of objective function formulation on calibration efficiency","authors":"Ismail M. A. Abuamer,&nbsp;Chris M. J. Tampère","doi":"10.1049/smc2.12092","DOIUrl":null,"url":null,"abstract":"<p>Traffic microsimulation models are crucial for intelligent transportation systems evaluation, but careful parameter calibration is required for credible pre- and post-ITS comparisons. However, the back-box and stochastic nature of the system make calibration challenging. Sensitivity analysis (SA) helps to identify influential parameters, but scenario dependency limits its generalisability. Metrics such as root mean squared relative error (RMSRE) can oversimplify the stochasticity in traffic data, compromising calibration quality. Furthermore, calibration for specific key performance indicators (KPIs) does not ensure the reliability of other KPIs. The authors propose the simultaneous calibration of driving behaviour parameters without prior sensitivity information. They demonstrate the effect of the error metric and objective function facets on the calibration efficiency and parameter convergence consistency. Results indicate that employing SA to identify influential parameters is unnecessary. Each parameter converges to a stable point by responding directly to the information within the objective function or due to the interactions with other parameters. Therefore, simultaneous calibration of multiple KPIs and maintaining the stochasticity structure in the data—enhanced calibration efficiency and parameter convergence consistency. Additionally, using probabilistic dissimilarity metrics that consider the entire distribution, such as the Wasserstein distance, outperform the K–S distance and RMSRE.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":"6 4","pages":"276-290"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic microsimulation models are crucial for intelligent transportation systems evaluation, but careful parameter calibration is required for credible pre- and post-ITS comparisons. However, the back-box and stochastic nature of the system make calibration challenging. Sensitivity analysis (SA) helps to identify influential parameters, but scenario dependency limits its generalisability. Metrics such as root mean squared relative error (RMSRE) can oversimplify the stochasticity in traffic data, compromising calibration quality. Furthermore, calibration for specific key performance indicators (KPIs) does not ensure the reliability of other KPIs. The authors propose the simultaneous calibration of driving behaviour parameters without prior sensitivity information. They demonstrate the effect of the error metric and objective function facets on the calibration efficiency and parameter convergence consistency. Results indicate that employing SA to identify influential parameters is unnecessary. Each parameter converges to a stable point by responding directly to the information within the objective function or due to the interactions with other parameters. Therefore, simultaneous calibration of multiple KPIs and maintaining the stochasticity structure in the data—enhanced calibration efficiency and parameter convergence consistency. Additionally, using probabilistic dissimilarity metrics that consider the entire distribution, such as the Wasserstein distance, outperform the K–S distance and RMSRE.

Abstract Image

智慧城市交通微观模拟:研究目标函数公式对标定效率的影响
交通微观模拟模型对于智能交通系统的评估至关重要,但需要仔细的参数校准来进行可靠的its前后比较。然而,系统的背箱和随机特性使校准具有挑战性。敏感性分析(SA)有助于识别有影响的参数,但场景依赖性限制了其通用性。均方根相对误差(RMSRE)等度量可能会过度简化交通数据的随机性,从而影响校准质量。此外,特定关键绩效指标(kpi)的校准并不能确保其他kpi的可靠性。作者提出了一种无需先验灵敏度信息的驾驶行为参数同步校准方法。论证了误差度量和目标函数两个方面对标定效率和参数收敛一致性的影响。结果表明,没有必要使用SA来识别影响参数。每个参数通过直接响应目标函数内的信息或由于与其他参数的相互作用而收敛到一个稳定点。因此,同时校准多个kpi并保持数据中的随机结构可以提高校准效率和参数收敛一致性。此外,使用考虑整个分布的概率不相似性指标,如Wasserstein距离,优于K-S距离和RMSRE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信