Tapan Jana, Subhankar Pal, Amit Shaw, L.S. Ramachandra
{"title":"A remedy to mitigate tensile instability in SPH for simulating large deformation and failure of geomaterials","authors":"Tapan Jana, Subhankar Pal, Amit Shaw, L.S. Ramachandra","doi":"10.1016/j.advengsoft.2024.103848","DOIUrl":null,"url":null,"abstract":"<div><div>Large deformation analysis in geomechanics plays an important role in understanding the nature of post-failure flows and hazards associated with landslides under different natural calamities. In this study, a SPH framework is proposed for large deformation and failure analysis of geomaterials. An adaptive B-spline kernel function in combination with a pressure zone approach is proposed to counteract the numerical issues associated with tensile instability. The proposed algorithm is validated using a soil cylinder drop problem, and the results are compared with FEM. Finally, the effectiveness of the proposed algorithm in the successful removal of tensile instability and stress noise is demonstrated using the well-studied slope failure simulation of a cohesive soil vertical cut.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"201 ","pages":"Article 103848"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Large deformation analysis in geomechanics plays an important role in understanding the nature of post-failure flows and hazards associated with landslides under different natural calamities. In this study, a SPH framework is proposed for large deformation and failure analysis of geomaterials. An adaptive B-spline kernel function in combination with a pressure zone approach is proposed to counteract the numerical issues associated with tensile instability. The proposed algorithm is validated using a soil cylinder drop problem, and the results are compared with FEM. Finally, the effectiveness of the proposed algorithm in the successful removal of tensile instability and stress noise is demonstrated using the well-studied slope failure simulation of a cohesive soil vertical cut.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.